牛顿第二定律的应用(二)

北 京 四 中

编 稿:朱长忠 责 编:郭金娟

牛顿第二定律的应用(二)

【学习目标】

1、知道利用整体法和隔离法分析连接体问题。

2、知道瞬时加速度的计算方法。

3、知道临界法、程序法、假设法在牛顿第二定律中的应用。

4、学会利用图像处理动力学问题的方法。

【重点、难点】

掌握临界法、程序法、假设法、图象法、整体法和分隔法,并能利用它们处理物理问题。

【知识精讲】

一、整体法和隔离法分析连接体问题

在研究力与运动的关系时,常会涉及相互关联物体间的相互作用问题,即连接体问题。在求解连接体问题时,整体法和隔离法相互依存,相互补充,交替使用,形成一个完整的统一体。

在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点)分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量)。如果需要知道物体之间的相互作用力,就需要把物体从系统中隔离出来,将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程。隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。

例1、为了测量木板和斜面间的动摩擦因数,某同学设计这样一个实验。在小木板上固定一个弹簧秤(弹簧秤的质量不计),弹簧秤下端吊一个光滑的小球。将木板和弹簧秤一起放在斜面上。当用手固定住木板时,弹簧秤示数为F1;放手后使木板沿斜面下滑,稳定时弹簧秤示数为F2,测得斜面倾角为θ,由以上数据可算出木板与斜面间的动摩擦因数为(只能用题中给出的已知量表示)。

解析:把木板、小球、弹簧看成一个整体,应用整体法。 木板、小球、弹簧组成的系统,当沿斜面下滑时,它们有相同的加速度。 设,它们的加速度为a, 则可得:(m球+m木)gsinθ-μ(m球+m木)gcosθ=(m球+m木)a

可得:a=gsinθ-μgcosθ ①

隔离小球,对小球应用隔离法,

对小球受力分析有:mgsinθ-F2=ma ②

而:mgsinθ=F1 ③

由①②得:F2=μmgcosθ ④

由③④得tanθ

例2、如图示,两个质量均为m的完全相同的物块,中间用绳连接,若绳能够承受的最大拉力为T,现将两物块放在光滑水平面上,用拉力F1拉一物块时,恰好能将连接绳拉断;倘若把两物块放在粗糙水平面上,用拉力F2拉一物块时(设拉力大于摩擦力),也恰好将连接绳拉断,比较F1、F2的大小可知( )。

A、F1>F2 B、F1<F2 C、F1=F2 D、无法确定 解析:(1)当放置在光滑水平面上时。

由于两物体的加速度相同,可以把它们看成一个整体,对此应用整体法。

由F=ma可知,两物体的整体加速度。

在求绳子张力时,必须把物体隔离(否则,绳子张力就是系统内力),应用隔离法。 隔离后一物体,则绳子的张力:。

(2)当放置在粗糙水平面上时,同样应用整体法与隔离法。

设每个物块到的滑动摩擦力为F′,则整体加速度

隔离后一个物体,则绳子的张力 。

可见这种情况下,外力都等于绳子的最大张力T的两倍,故选项C正确。

答案:C。

二、瞬时加速度的分析

分析物体在某一时刻的瞬时加速度,关键是分析那一时刻前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。此类问题应注意两种基本模型的建立。

(1)钢性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要恢复弹性形变时间。一般题目中所给细线和接触面在不加特殊说明时,均可按此模型处理。

(2) 弹簧(或橡皮绳):此种物体的特点是形变量大,恢复弹性形变需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变。

例3、质量分别为mA和mB的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下,如图所示,当细线被剪断的瞬间。关于两球下落加速度的说法中,正确的是 ( )

A、aA=aB=0 B、aA=aB=g

C、aA>g,aB=0 D、aA<g,aB=0

解析:分别以A、B两球为研究对象。当细线束剪断前,A球受到竖直向下的重力mAg、弹簧的弹力T,竖直向上细线的拉力T′;B球受到竖直向下的重力mBg,竖直向上弹簧的弹力T,如下图。

它们都处于力平衡状态,因此满足条件,

T =mBg

T′=mAg+T=(mA+mB)g

细线剪断的瞬间,拉力T′消失,但弹簧仍暂时保持着原来的拉伸状态,故B球受力不变,仍处于平衡状态。所以,B的加速度aB=0,而A球则在重力和弹簧的弹力作用下,其瞬时加速度为:

答案选C。

例4、如下图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,它们的质量之比是l∶2∶3,设所有接触面都光滑,当沿水平方向抽出木块C的瞬间,木块A和B的加速度分别是aA= ,aB= 。

解析:在抽出木块C前,弹簧的弹力F=mAg。抽出木块C瞬间,弹簧弹力不变,所以,A所受合力仍为零,故aA=0。木块B所受合力FB=mBg+F

= 答案: ,所以。

三、临界问题的分析与求解

在应用牛顿定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象,此时要采用极限分析法,看物体在不同的加速度时,会有哪些现象发生,尽快找出临界点,求出临界条件。

例5、如图所示,斜面是光滑的,一个质量是0.2kg的小球用细绳吊在倾角为53°的斜面顶端。斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s2的加速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力。

解析:必须先求出小球离开斜面的临界值a0,然后,才能确定某一状态下小球是否在斜面上。 处于临界状态时小球受力如图示:

则有:mgcotθ=ma0 解得:a0=gcotθ=7.5m/s2 ∵a=8m/s2>a0

∴小球在此时已经离开斜面

∴绳子的拉力

斜面对小球的弹力:N=0

例6、一个弹簧放在水平地面上,Q为与轻弹簧上端连在一起的秤盘,P为一重物,已知P的质量 M=10.5kg,Q的质量m=1.5kg,弹簧的质量不计,劲度系数k=800N/m,系统处于静止,如下图所示,现给P施加一个方向竖直向上的力F,使它从静止开始向上做匀加速运动,已知在前0.2s以后,F为恒力,求:力F的最大值与最小值。(取g=l0m/s2)

解析:(1)P做匀加速运动,它受到的合外力一定是恒力。P受到的合外力共有3个:重力、向上的力F及对Q对P的支持力FN,其中重力Mg为恒力,FN为变力,题目说0.2s以后F为恒力,说明t=0.2s的时刻,正是P与Q开始脱离接触的时刻,即临界点。

(2)t=0.2s的时刻,是Q对P的作用力FN恰好为零的时刻,此时刻P与Q具有相同的速度及加速度。因此,此时刻弹簧并未恢复原长,也不能认为此时刻弹簧的弹力为零。

(3)当t=0时刻,应是力F最小的时刻,此时刻F小=(M+m)a(a为它们的加速度)。随后,由于弹簧弹力逐渐变小,而P与Q受到的合力保持不变,因此,力F逐渐变大,至t=0.2s时刻,F增至最大,此时刻F大=M(g+a)。

以上三点中第(2)点是解决此问题的关键所在,只有明确了P与Q脱离接触的瞬间情况,才能确定这0.2s时间内物体的位移,从而求出加速度a,其余问题也就迎刃而解了。

解:设开始时弹簧压缩量为x1,t=0.2s时弹簧的压缩量为x2,物体P的加速度为a,则有: kx1=(M+m)g ①

kx2-mg=ma ②

x1-x2=

由①式得: ③

解②③式得:a=6m/s2

力F的最大值:F小=(M+m)a=72N

力F的最大值:F大=M(g+a)=168N

四、利用图象求解动力学与运动学的题目

图象在中学物理解题中应用十分广泛,这是因为它具有以下优点:

①能形象地表达物理规律;

②能直观地描述物理过程;

③能鲜明地表示物理量之间的依赖关系。

因此,理解图象的意义,自觉地运用图象分析物理规律是十分必要的。

在理解图象所表示的物理规律时要注意:

(1)看清坐标轴所表示的物理量及单位,并注意坐标原点是否从零开始。

(2)图象上每一点都对应着两个数,沿图象上各点移动,反映着一个量随另一量变化的函数关系。因此,图象都应该与一个代数方程相对应。

(3)图象上任一点的斜率,反映了该点处一个量随另一个量变化的快慢(变化率),如s—t图象中的斜率为速度,v—t图象中的斜率为加速度。

(4)一般图象与它对应的横轴(或纵轴)之间的面积,往往也能代表一个物理量,如v—t图象中,曲线与t轴所夹的面积代表位移。

例7、放在水平地面上的一物块,受到方向不变的水平推力的作用,F的大小与时间t的关系和物块速度v与时间t的关系,如图甲、乙所示。取重力加速度g=10m/s2。由此两图线可以求得物块的质量m和物块与地面之间的动摩擦因数μ分别为 ( )

A、m=0.5kg,μ=0.4 B、m=1.5kg,μ

C、m=0.5kg,μ=0.2 D、m=1kg,μ=0.2

解析:由v-t图可知在0~2s 静止,2~4s是以初速度为0,加速度a=2m/s2做匀加速运动,4~6s内以v=4m/s做匀速直线运动,结合F-t图像可分析得出:μmg=2N,ma=3N-2N,解得m=0.5kg,μ=0.4。

答案选A。

五、程序法解题

程序法:按时间的先后顺序对题目给出的物体运动过程(或不同的状态)进行分析(包括列式计算)的解题方法可称为程序法,程序法解题的基本思路是:

(1)划分出题目中有多少个不同的过程或多少个不同的状态。

(2)对各个过程或各个状态进行具体分析,得出正确的结果。

(3)前一个过程的结束就是后一个过程的开始,两个过程的交接点是问题的关键。

例8:如下图所示,一根轻质弹簧上端固定,下挂一质量为m0的平盘,盘中有物体质量为m,当盘静止时,弹簧伸长了l,现向下拉盘使弹簧再伸长Δl后停止,然后松开放开,设弹簧总处在弹性限度内,则刚松开手时盘对物体的支持力等于:

A、(1+ B、(1+)mg C、 D、

答案:B。

解析: 题目描述主要有两个状态:(1)未用手拉时盘处于静止状态;(2)松手时盘处于向上加速状态,对于这两个状态,分析即可:

当弹簧伸长l静止时,对整体有

当刚松手时,对整体有:

对m有:F-mg=ma ③

对①、②、③解得:

说明:在求解物体系从一种运动过程(或状态)变化到另—种运动过程(或状态)的力学问题(称之为“程序题 ”)时,通常用“程序法”求解。要求我们从读题开始,就要注意到题中能划分多少个不同的过程或多少个不同的状态,然后对各个过程或各个状态进行分析(称之为“程序分析”),最后逐一列式求解得到结论。“程序法”是一种重要的基本解题方法,我们在“程序分析 ” 的基础上,通过比较各个过程(或状态)下力产生的效果,然后,从力的效果出发分步列方程,这样解题往往简化了数学列式和数学运算,使问题得到了巧解。

六、用假设法分析物体的受力

方法1:首先假定某力不存在,查看物体会发生怎样的运动,然后再确定此力应在什么方向,物体才会产生题目给定的运动状态。

方法2:假定此力沿某一方向,用运动规律进行验算,若算得正值,说明此力与假定的方向相同,否则相反。

方法3:在力的作用线上定出坐标轴的正方向将此力用正号运算,若求得是正值,说明此力与坐标轴同向,否则相反。

例9、两个叠在一起的滑块,置于固定的、倾角为θ的斜面上,如下图所示,滑块A、B质量分别为M、m,A与斜面间的动摩擦因数为μ1,B与A之间的动摩擦因数为μ2,已知两滑块都从静止

开始以相同的加速度从斜面滑下,滑块B受到的摩擦力 ( )

A、等于零 B、方向沿斜面向上 C、大于等于μ1mgcosθ D、大于等于μ2mgcosθ 解析:把A、B两滑块作为一个整体,设其下滑加速度为a ,由牛顿第二定律: (M+m)gsinθ-μ1(M+m)gcosθ=(M+m)a

得a =g(gsinθ-μ1cosθ)

由于a<gsinθ,可见B随A一起下滑过程中,必须受到A对它沿斜面向上的摩擦力,设摩擦力为FB(如图所示),由牛顿第二定律:mgsinθ-FB=ma

得FB=mgsinθ-ma=mgsinθ-mg(sinθ-μ1cosθ)=μ1mgcosθ

答案:B、C

说明:由于所求的摩擦力是未知力,如果不从加速度大小比较先判定其方向,也可任意假设,若设B受到A对它的摩擦力沿斜面向下,则牛顿第二定律的表达式为:mgsinθ+FB=ma得FB=ma-mgsinθ=mg(sinθ-μ1cosθ)-mgsinθ=-μ1mgcosθ,大小仍为μ1mgcosθ。

式中负号表示FB的方向与规定的正方向相反,即沿斜面向上。

例10、如图所示,传送带与水平面夹角θ=37°,并以v=10m/s的速度运行,在传送带的A端轻轻地放一小物体,若已知传送带与物体之间的动摩擦因数μ=0.5,传送带A到B端的距离s=16m,则小物体从A端运动到B端所需的时间可能是(g=10m/s2) ( )

A、1.8s B、2.0s C、2.1s D、4. 0s

解析:若传送带顺时针转动,物体受向上的摩擦力,因mgsinθ>μmgcosθ,故物块向下加速运动,a=gsinθ-μgcosθ=2m/s2。由,解得:t=4.0s。即,小物体从A端运动到B端所需的时间为4.0s,所以,D正确。

若传送带逆时针转动,物体开始受向下的摩擦力,向下加速运动,a1=gsinθ+μgcosθ=10m/s2,当速度达到l0m/s时,运动位移,所用的时间为,t1=,以后由于下滑力的作用物块又受向上的摩擦力,此时它的加速度为a2=2m/s2,在此加速度下运动的位移 s2=s-s1=11m,又由得11=10t2+t22,解得t2=1s。所以,小物体从A端运动到B端所需的时间:t总=t1+t2=2s,B正确。

答案:B、D。

【巩固练习】

1、如图所示,在两根轻质弹簧a、b之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同一竖直线上的两点,等小球静止后,突然撤去弹簧a,则在撤去弹簧后的瞬间,小球加速度的大小为2.5m/s2,若突然撤去弹簧b,则在撒去弹簧后的瞬间,小球加速度的大小可能为 ( )

A、7.5m/s2,方向竖直向下

B、7.5 m/s2,方向竖直向上

C、12.5 m/s2,方向竖直向下

D、12.5 m/s2,方向竖直向上

2、质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上,已知t=0时质点的速度为零,在图所示的t1、t2、t3和t4各时刻中,哪一时刻质点的速率最大 ( )

A、t1 B、t2 C、t3 D、t4

3、在光滑的水平面上,有一个物体同时受到两个水平力F1和F2作用,在第1s内保持静止。若两个力F1和F2随时间变化如图示,则下列说法正确的是 ( )

A、在第2s内,物体做匀加速运动,加速度的大小恒定,速度均匀增大

B、在第3s内,物体做变加速运动,加速度均匀减小,速度逐渐减小

C、在第5s内,物体做变加速运动,加速度均匀减小,速度逐渐增大

D、在第5s末,物体的加速度与速度均为零

4、放在水平光滑平面上的物体A和B,质量分别为M和m,水平恒力F作用在A上,A、B间的作用力为F1;水平恒力F作用在B上,A、B间作用为F2,则 ( )

A、F1+F2=F B、F1=F2

C、 D、

5、重物A和小车B的重力分别为GA和GB,用跨过定滑轮的细线将它们连接起来,如图所示,已知GA>GB,不计一切摩擦。则细线对小车B的拉力T的大小是 ( )

A、T=GA B、GA>T C、GA<T D、当GB>>GA时,T约等于GA

6、如图所示,一个箱子放在水平面上,箱内有一固定的竖直杆,在杆在上套着一个环,箱和杆的 质量为M,环的质量为m,已知环沿杆加速下滑,环与杆的摩擦力的大小为f,则此时箱对地面的压力 ( )

A、等于Mg B、等于(M+m)g

C、等于Mg+f D、等于(M+m)g-f

7、如图所示,质量2m的物块A与水平地面成的摩擦可忽略不计,质量为m的物块B与地面的动摩擦因数为μ,在已知水平推力F作用下,A、B作加速运动,则A对B的作用为 。

8、如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块A的顶端P处。细线的另一端拴一质量为m的小球,当滑块至少以a= 向左运动时,小球对滑块的压力等于零,当滑块以a=2g的加速度向左运动时,线中拉力T=。

9、物体以大小不变的初速度v0沿木板滑动。若木板倾角θ不同。物体能上滑的距离s也不同,图示是得出的s—θ图像.求图中最低点P的坐标。(取10m/s2)

10、风洞实验室中可产生水平方向的、大小可调节的风力。现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径,如图所示:

(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受的风力为小球所受重力的0.5倍。求小球与杆间的滑动摩擦因数。

(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静上出发在细杆上滑下距离s所需时间为多少 ?(sin37°=0.6,cos37°=0.8)

11、如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一小滑块,小滑块质量为m=1kg,其尺寸远小于L。小滑块与木板之间的动摩擦因数为μ=0.4(g=l0m/s2)。

(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?

(2)其他条件不变,若恒力F=22.8N,且始终作用在M上,最终使得m能从M上面滑落下来。问:m在M上面滑动的时间是多大。

【参考答案】 1、AC 2、B 3、C 4、AC 5、BD 6、C 7、解析:B物体受地面摩擦力大F′=μFN=μmg

设A、B运动共同速度为a

根据牛顿第二定律,以AB整体为研究对象

F- F′=3ma

B物体受力情况如图所示:

对B根据牛顿第二定律:FAB-F′=ma

所以FAB=F′+ma=

8、g,

9、解析:当θ1=90°时,s1=15m,此时物体实际做竖直上抛运动,可解得v0=10

当θ2=0°时,s2=20m,此时物体沿水平面运动,由

当θ为一般值时,

所以,当θ= 90°-arctanα=53°时,s有极小值12,故P的坐标为(53°,12m)

10、(1)设小球受的风力为F,小球质量为m,因小球做匀速运动,则F=μmg,F=0.5mg,所以μ=0.5

(2)如下图所示,设杆对小球的支持力为FN,摩擦力为Ff,小球受力产生加速度,沿杆方向有Fcosθ+mgsinθ-Ff=ma ①

垂直 杆方向有FN+Fsinθ-mgcosθ=0 ②

又Ff=μFN ③

由①②③可解得a=g

由s=at2得t=

答案:(1)0.5;(2)

11、(1)隔离小滑块,用隔离法研究小滑块。 小滑块与木板间的滑动摩擦力 f=μN=μmg 小滑块在滑动摩擦力f作用下向右匀加速运动的加速度

对木板与小滑块用整体法。

力F最小值的临界条件是木板与小滑块有相同的加速度的, 所以,

要使m能从M上面滑落下来的条件是:

(2)设m在M上滑动的时间为t,当恒力F=22.8N,木板的加速度

小滑块在时间t内运动位移 木板在时间t内运动位移

因 s2-s1=L

答案:(1)F>20N。(2)t=2s。


© 2024 实用范文网 | 联系我们: webmaster# 6400.net.cn