20**年高考数学真题导数专题

2017年高考真题导数专题

一.解答题(共12小题)

1.已知函数f (x )=ae2x +(a ﹣2)e x ﹣x .

(1)讨论f (x )的单调性;

(2)若f (x )有两个零点,求a 的取值范围.

2.已知函数f (x )=ax2﹣ax ﹣xlnx ,且f (x )≥0.

(1)求a ;

(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.

3.已知函数f (x )=x﹣1﹣alnx .

(1)若 f (x )≥0,求a 的值;

(2)设m 为整数,且对于任意正整数n ,(1+)(1+

m 的最小值.

4.已知函数f (x )=x3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)

(1)求b 关于a 的函数关系式,并写出定义域;

(2)证明:b 2>3a ;

(3)若f (x ),f′(x )这两个函数的所有极值之和不小于﹣,求a 的取值范围.

5.设函数f (x )=(1﹣x 2)e x .

(1)讨论f (x )的单调性;

(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围.

6.已知函数f (x )=(x ﹣

(1)求f (x )的导函数;

(2)求f (x )在区间[,+∞)上的取值范围.

7.已知函数f (x )=x2+2cosx ,g (x )=ex (cosx ﹣sinx +2x ﹣2),其中e ≈2.17828…是自然对数的底数.

(Ⅰ)求曲线y=f(x )在点(π,f (π))处的切线方程;

(Ⅱ)令h (x )=g (x )﹣a f(x )(a ∈R ),讨论h (x )的单调性并判断有无极

)…(1

+)<m ,求)e ﹣x (x ≥).

值,有极值时求出极值.

8.已知函数f (x )=ex cosx ﹣x .

(1)求曲线y=f(x )在点(0,f (0))处的切线方程;

(2)求函数f (x )在区间[0,]上的最大值和最小值.

9.设a ∈Z ,已知定义在R 上的函数f (x )=2x4+3x 3﹣3x 2﹣6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.

(Ⅰ)求g (x )的单调区间;

(Ⅱ)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g(x )(m ﹣x 0)﹣f (m ),求证:h (m )h (x 0)<0;

(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且∈[1,x 0)∪(x 0,2],满足|﹣x 0|≥.

10.已知函数f (x )=x 3﹣ax 2,a ∈R ,

(1)当a=2时,求曲线y=f(x )在点(3,f (3))处的切线方程;

(2)设函数g (x )=f(x )+(x ﹣a )cosx ﹣sinx ,讨论g (x )的单调性并判断有无极值,有极值时求出极值.

11.设a ,b ∈R ,|a |≤1.已知函数f (x )=x3﹣6x 2﹣3a (a ﹣4)x +b ,g (x )=ex f (x ).

(Ⅰ)求f (x )的单调区间;

(Ⅱ)已知函数y=g(x )和y=ex 的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:f (x )在x=x0处的导数等于0;

(ii )若关于x 的不等式g (x )≤e x 在区间[x 0﹣1,x 0+1]上恒成立,求b 的取值范围.

12.已知函数 f (x )=ex (e x ﹣a )﹣a 2x .

(1)讨论 f (x )的单调性;

(2)若f (x )≥0,求a 的取值范围.

2017年高考真题导数专题

参考答案与试题解析

一.解答题(共12小题)

1.(2017•新课标Ⅰ)已知函数f (x )=ae2x +(a ﹣2)e x ﹣x .

(1)讨论f (x )的单调性;

(2)若f (x )有两个零点,求a 的取值范围.

【解答】解:(1)由f (x )=ae2x +(a ﹣2)e x ﹣x ,求导f′(x )=2ae2x +(a ﹣2)e x ﹣1,

当a=0时,f′(x )=﹣2e x ﹣1<0,

∴当x ∈R ,f (x )单调递减,

当a >0时,f′(x )=(2e x +1)(ae x ﹣1)=2a(e x +)(e x ﹣),

令f′(x )=0,解得:x=ln,

当f′(x )>0,解得:x >ln ,

当f′(x )<0,解得:x <ln ,

∴x ∈(﹣∞,

ln )时,f (x )单调递减,x ∈(ln ,+∞)单调递增; 当a <0时,f′(x )=2a(e x +)(e x ﹣)<0,恒成立,

∴当x ∈R ,f (x )单调递减,

综上可知:当a ≤0时,f (x )在R 单调减函数,

当a >0时,f (x )在(﹣∞,

ln )是减函数,在(ln ,+∞)是增函数;

(2)①若a ≤0时,由(1)可知:f (x )最多有一个零点,

当a >0时,f (x )=ae2x +(a ﹣2)e x ﹣x ,

当x→﹣∞时,e 2x →0,e x →0,

∴当x→﹣∞时,f (x )→+∞,

当x→∞,e 2x →+∞,且远远大于e x 和x ,

∴当x→∞,f (x )→+∞,

∴函数有两个零点,f (x )的最小值小于0即可,

由f (x )在(﹣∞,ln )是减函数,在(ln ,+∞)是增函数,

∴f (x )min =f(ln )=a×()+(a ﹣2)×﹣ln <0,

∴1﹣﹣ln <0,即ln +﹣1>0,

设t=,则g (t )=lnt+t ﹣1,(t >0),

求导g′(t )=+1,由g (1)=0,

∴t=>1,解得:0<a <1,

∴a 的取值范围(0,1).

方法二:(1)由f (x )=ae2x +(a ﹣2)e x ﹣x ,求导f′(x )=2ae2x +(a ﹣2)e x ﹣1, 当a=0时,f′(x )=2ex ﹣1<0,

∴当x ∈R ,f (x )单调递减,

当a >0时,f′(x )=(2e x +1)(ae x ﹣1)=2a(e x +)(e x ﹣),

令f′(x )=0,解得:x=﹣lna ,

当f′(x )>0,解得:x >﹣lna ,

当f′(x )<0,解得:x <﹣lna ,

∴x ∈(﹣∞,﹣lna )时,f (x )单调递减,x ∈(﹣lna ,+∞)单调递增; 当a <0时,f′(x )=2a(e x +)(e x ﹣)<0,恒成立,

∴当x ∈R ,f (x )单调递减,

综上可知:当a ≤0时,f (x )在R 单调减函数,

当a >0时,f (x )在(﹣∞,﹣lna )是减函数,在(﹣lna ,+∞)是增函数;

(2)①若a ≤0时,由(1)可知:f (x )最多有一个零点,

②当a >0时,由(1)可知:当x=﹣lna 时,f (x )取得最小值,f (x )min =f(﹣lna )=1﹣﹣ln ,

当a=1,时,f (﹣lna )=0,故f (x )只有一个零点,

当a ∈(1,+∞)时,由1﹣﹣ln >0,即f (﹣lna )>0,

故f (x )没有零点,

当a ∈(0,1)时,1﹣﹣

ln <0,f (﹣lna )<0,

由f (﹣2)=ae﹣4+(a ﹣2)e ﹣2+2>﹣2e ﹣2+2>0,

故f (x )在(﹣∞,﹣lna )有一个零点,

假设存在正整数n 0,满足n 0>ln (﹣1),则f (n 0)=

>﹣n 0>﹣n 0>0, (a +a ﹣2)﹣n 0由ln (﹣1)>﹣lna ,

因此在(﹣lna ,+∞)有一个零点.

∴a 的取值范围(0,1).

2.(2017•新课标Ⅱ)已知函数f (x )=ax2﹣ax ﹣xlnx ,且f (x )≥0.

(1)求a ;

(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.

【解答】(1)解:因为f (x )=ax2﹣ax ﹣xlnx=x(ax ﹣a ﹣lnx )(x >0),

则f (x )≥0等价于h (x )=ax﹣a ﹣lnx ≥0,求导可知h′(x )=a﹣.

则当a ≤0时h′(x )<0,即y=h(x )在(0,+∞)上单调递减,

所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0.

因为当0<x <时h′(x )<0、当x >时h′(x )>0,

所以h (x )min =h(),

又因为h (1)=a﹣a ﹣ln1=0, 所以=1,解得a=1;

(2)证明:由(1)可知f (x )=x2﹣x ﹣xlnx ,f′(x )=2x﹣2﹣lnx ,

令f′(x )=0,可得2x ﹣2﹣lnx=0,记t (x )=2x﹣2﹣lnx ,则t′(x )=2﹣, 令t′(x )=0,解得:x=,

所以t (x )在区间(0,)上单调递减,在(,+∞)上单调递增,

所以t (x )min =t()=ln2﹣1<0,从而t (x )=0有解,即f′(x )=0存在两根x 0,x 2,

且不妨设f′(x )在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为

正,

所以f (x )必存在唯一极大值点x 0,且2x 0﹣2﹣lnx 0=0,

所以f (x 0)=﹣x 0﹣x 0lnx 0=﹣x 0+2x 0﹣2

)max =﹣=x0﹣, 由x 0<可知f (x 0)<(x 0﹣

由f′()<0可知x 0<<, +=;

所以f (x )在(0,x 0)上单调递增,在(x 0,)上单调递减,

所以f (x 0)>f ()=;

综上所述,f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.

3.(2017•新课标Ⅲ)已知函数f (x )=x﹣1﹣alnx .

(1)若 f (x )≥0,求a 的值;

(2)设m 为整数,且对于任意正整数n ,(1+)(1+

m 的最小值.

【解答】解:(1)因为函数f (x )=x﹣1﹣alnx ,x >0,

所以f′(x )=1﹣

=,且f (1)=0. )…(1

+)<m ,求

所以当a ≤0时f′(x )>0恒成立,此时y=f(x )在(0,+∞)上单调递增,这与f (x )≥0矛盾;

当a >0时令f′(x )=0,解得x=a,

所以y=f(x )在(0,a )上单调递减,在(a ,+∞)上单调递增,即f (x )min =f(a ),

又因为f (x )min =f(a )≥0,

所以a=1;

(2)由(1)可知当a=1时f (x )=x﹣1﹣lnx ≥0,即lnx ≤x ﹣1,

所以ln (x +1)≤x 当且仅当x=0时取等号,

所以ln (1+

)<,k ∈N *.

)+…+ln (1+)<++…+=1﹣<1, 一方面,ln (1+)+ln (1+

即(1+)(1+)…(1+)<e ;

)>(1+)(1

+)(1

+)

=>2; 另一方面,(1

+)(1+)…(1

+

从而当n ≥3时,(1+)(1+)…(1+)∈(2,e ),

)…(1+)<m 成立, 因为m 为整数,且对于任意正整数n ,(1+)(1+

所以m 的最小值为3.

4.(2017•江苏)已知函数f (x )=x3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)

(1)求b 关于a 的函数关系式,并写出定义域;

(2)证明:b 2>3a ;

(3)若f (x ),f′(x )这两个函数的所有极值之和不小于﹣,求a 的取值范围.

【解答】(1)解:因为f (x )=x3+ax 2+bx +1,

所以g (x )=f′(x )=3x2+2ax +b ,g′(x )=6x+2a ,

令g′(x )=0,解得x=﹣.

由于当x >﹣时g′(x )>0,g (x )=f′(x )单调递增;当x <﹣时g′(x )<0,g (x )=f′(x )单调递减;

所以f′(x )的极小值点为x=﹣,

由于导函数f′(x )的极值点是原函数f (x )的零点,

所以f (﹣)=0,即﹣所以b=+(a >0). +﹣+1=0,

因为f (x )=x3+ax 2+bx +1(a >0,b ∈R )有极值,

所以f′(x )=3x2+2ax +b=0的实根,

所以4a 2﹣12b ≥0,即a 2﹣所以b=+(a ≥3).

+

=(4a 3﹣27)(a 3+≥0,解得a ≥3, (2)证明:由(1)可知h (a )=b2﹣

3a=

﹣27),

由于a >3,所以h (a )>0,即b 2>3a ;

(3)解:由(1)可知f′(x )的极小值为f′(﹣)=b﹣

设x 1,x 2是y=f(x )的两个极值点,则x 1+x 2=

所以f (x 1)+f (x 2)=++a (+, ,x 1x 2=, )+b (x 1+x 2)+2

=(x 1+x 2)[(x 1+x 2)2﹣3x 1x 2]+a [(x 1+x 2)2﹣2x 1x 2]+b (x 1+x 2)+2

=﹣+2,

又因为f (x ),f′(x )这两个函数的所有极值之和不小于﹣,

所以b ﹣+﹣+2=﹣≥﹣,

因为a >3,所以2a 3﹣63a ﹣54≤0,

所以2a (a 2﹣36)+9(a ﹣6)≤0,

所以(a ﹣6)(2a 2+12a +9)≤0,

由于a >3时2a 2+12a +9>0,

所以a ﹣6≤0,解得a ≤6,

所以a 的取值范围是(3,6].

5.(2017•新课标Ⅱ)设函数f (x )=(1﹣x 2)e x .

(1)讨论f (x )的单调性;

(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围.

【解答】解:(1)因为f (x )=(1﹣x 2)e x ,x ∈R ,

所以f′(x )=(1﹣2x ﹣x 2)e x ,

令f′(x )=0可知x=﹣1±

当x <﹣1﹣

0,

所以f (x )在(﹣∞,﹣1﹣

﹣1+)上单调递增; ),(﹣1+,+∞)上单调递减,在(﹣1﹣,或x >﹣1+, 时f′(x )<0,当﹣1﹣<x <﹣1+时f′(x )>

(2)由题可知f (x )=(1﹣x )(1+x )e x .下面对a 的范围进行讨论:

①当a ≥1时,设函数h (x )=(1﹣x )e x ,则h′(x )=﹣xe x <0(x >0), 因此h (x )在[0,+∞)上单调递减,

又因为h (0)=1,所以h (x )≤1,

所以f (x )=(1﹣x )h (x )≤x +1≤ax +1;

②当0<a <1时,设函数g (x )=ex ﹣x ﹣1,则g′(x )=ex ﹣1>0(x >0), 所以g (x )在[0,+∞)上单调递增,

又g (0)=1﹣0﹣1=0,

所以e x ≥x +1.

因为当0<x <1时f (x )>(1﹣x )(1+x )2,

所以(1﹣x )(1+x )2﹣ax ﹣1=x(1﹣a ﹣x ﹣x 2),

取x 0

=∈(0,1),则(1﹣x 0)(1+x 0)2﹣ax 0﹣1=0,

所以f (x 0)>ax 0+1,矛盾;

③当a ≤0时,取x 0=

矛盾;

综上所述,a 的取值范围是[1,+∞).

6.(2017•浙江)已知函数f (x )=(x ﹣

(1)求f (x )的导函数;

(2)求f (x )在区间[,+∞)上的取值范围.

【解答】解:(1)函数f (x )=(x ﹣

导数f′(x )=(1﹣•

=(1﹣x +﹣∈(0,1),则f (x 0)>(1﹣x 0)(1+x 0)2=1≥ax 0+1,)e ﹣x (x ≥). )e ﹣x (x ≥), )e ﹣x ﹣•2)e ﹣x ﹣(x ﹣)e x =(1﹣x )(1﹣)e x ;

)e ﹣x , (2)由f (x )的导数f′(x )=(1﹣x )(1﹣

可得f′(x )=0时,x=1或, 当<x <1时,f′(x )<0,f (x )递减;

当1<x <时,f′(x )>0,f (x )递增;

当x >时,f′(x )<0,f (x )递减,

且x ≥⇔x 2≥2x ﹣1⇔(x ﹣1)2≥0,

则f (x )≥0.

由f ()=

e ,f (1)=0,f ()=e ,

即有f (x )的最大值为e ,最小值为f (1)=0.

则f (x )在区间[,+∞)上的取值范围是[0,e

].

7.(2017•山东)已知函数f (x )=x2+2cosx ,g (x )=ex (cosx ﹣sinx +2x ﹣2),其中e ≈2.17828…是自然对数的底数.

(Ⅰ)求曲线y=f(x )在点(π,f (π))处的切线方程;

(Ⅱ)令h (x )=g (x )﹣a f(x )(a ∈R ),讨论h (x )的单调性并判断有无极值,有极值时求出极值.

【解答】解:(I )f (π)=π2﹣2.f′(x )=2x﹣2sinx ,∴f′(π)=2π.

∴曲线y=f(x )在点(π,f (π))处的切线方程为:y ﹣(π2﹣2)=2π(x ﹣π). 化为:2πx﹣y ﹣π2﹣2=0.

(II )h (x )=g (x )﹣a f(x )=ex (cosx ﹣sinx +2x ﹣2)﹣a (x 2+2cosx ) h′(x )=ex (cosx ﹣sinx +2x ﹣2)+e x (﹣sinx ﹣cosx +2)﹣a (2x ﹣2sinx )

=2(x ﹣sinx )(e x ﹣a )=2(x ﹣sinx )(e x ﹣e lna ).

令u (x )=x﹣sinx ,则u′(x )=1﹣cosx ≥0,∴函数u (x )在R 上单调递增. ∵u (0)=0,∴x >0时,u (x )>0;x <0时,u (x )<0.

(1)a ≤0时,e x ﹣a >0,∴x >0时,h′(x )>0,函数h (x )在(0,+∞)单调递增;

x <0时,h′(x )<0,函数h (x )在(﹣∞,0)单调递减.

∴x=0时,函数h (x )取得极小值,h (0)=﹣1﹣2a .

(2)a >0时,令h′(x )=2(x ﹣sinx )(e x ﹣e lna )=0.

解得x 1=lna,x 2=0.

①0<a <1时,x ∈(﹣∞,lna )时,e x ﹣e lna <0,h′(x )>0,函数h (x )单调递增;

x ∈(lna ,0)时,e x ﹣e lna >0,h′(x )<0,函数h (x )单调递减;

x ∈(0,+∞)时,e x ﹣e lna >0,h′(x )>0,函数h (x )单调递增.

∴当x=0时,函数h (x )取得极小值,h (0)=﹣2a ﹣1.

当x=lna时,函数h (x )取得极大值,h (lna )=﹣a [ln 2a ﹣2lna +sin (lna )+cos (lna )+2].

②当a=1时,lna=0,x ∈R 时,h′(x )≥0,∴函数h (x )在R 上单调递增. ③1<a 时,lna >0,x ∈(﹣∞,0)时,e x ﹣e lna <0,h′(x )>0,函数h (x )单调递增;

x ∈(0,lna )时,e x ﹣e lna <0,h′(x )<0,函数h (x )单调递减;

x ∈(lna ,+∞)时,e x ﹣e lna >0,h′(x )>0,函数h (x )单调递增.

∴当x=0时,函数h (x )取得极大值,h (0)=﹣2a ﹣1.

当x=lna时,函数h (x )取得极小值,h (lna )=﹣a [ln 2a ﹣2lna +sin (lna )+cos (lna )+2].

综上所述:a ≤0时,函数h (x )在(0,+∞)单调递增;x <0时,函数h (x )在(﹣∞,0)单调递减.

x=0时,函数h (x )取得极小值,h (0)=﹣1﹣2a .

0<a <1时,函数h (x )在x ∈(﹣∞,lna )是单调递增;函数h (x )在x ∈(lna ,0)上单调递减.当x=0时,函数h (x )取得极小值,h (0)=﹣2a ﹣1.当x=lna时,函数h (x )取得极大值,h (lna )=﹣a [ln 2a ﹣2lna +sin (lna )+cos (lna )+2]. 当a=1时,lna=0,函数h (x )在R 上单调递增.

a >1时,函数h (x )在(﹣∞,0),(lna ,+∞)上单调递增;函数h (x )在(0,lna )上单调递减.当x=0时,函数h (x )取得极大值,h (0)=﹣2a ﹣1.当x=lna时,函数h (x )取得极小值,h (lna )=﹣a [ln 2a ﹣2lna +sin (lna )+cos (lna )+2].

8.(2017•北京)已知函数f (x )=ex cosx ﹣x .

(1)求曲线y=f(x )在点(0,f (0))处的切线方程;

(2)求函数f (x )在区间[0,]上的最大值和最小值.

【解答】解:(1)函数f (x )=ex cosx ﹣x 的导数为f′(x )=ex (cosx ﹣sinx )﹣1, 可得曲线y=f(x )在点(0,f (0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0, 切点为(0,e 0cos0﹣0),即为(0,1),

曲线y=f(x )在点(0,f (0))处的切线方程为y=1;

(2)函数f (x )=ex cosx ﹣x 的导数为f′(x )=ex (cosx ﹣sinx )﹣1,

令g (x )=ex (cosx ﹣sinx )﹣1,

则g (x )的导数为g′(x )=ex (cosx ﹣sinx ﹣sinx ﹣cosx )=﹣2e x •sinx,

当x ∈[0,],可得g′(x )=﹣2e x •sinx≤0,

]递减,可得g (x )≤g (0)=0,

]递减,

]上的最大值为f (0)=e0cos0﹣0=1;

﹣=﹣. 即有g (x )在[0,则f (x )在[0,即有函数f (x )在区间[0,最小值为f (

)=ecos 9.(2017•天津)设a ∈Z ,已知定义在R 上的函数f (x )=2x4+3x 3﹣3x 2﹣6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.

(Ⅰ)求g (x )的单调区间;

(Ⅱ)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g(x )(m ﹣x 0)﹣f (m ),求证:h (m )h (x 0)<0;

(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且∈[1,x 0)∪(x 0,2],满足|﹣x 0|≥.

【解答】(Ⅰ)解:由f (x )=2x4+3x 3﹣3x 2﹣6x +a ,可得g (x )=f′(x )=8x3+9x 2﹣6x ﹣6,

进而可得g′(x )=24x2+18x ﹣6.令g′(x )=0,解得x=﹣1,或x=.

当x 变化时,g′(x ),g (x )的变化情况如下表:

所以,g (x )的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).

(Ⅱ)证明:由h (x )=g(x )(m ﹣x 0)﹣f (m ),得h (m )=g(m )(m ﹣x 0)﹣f (m ),

h (x 0)=g(x 0)(m ﹣x 0)﹣f (m ).

令函数H 1(x )=g(x )(x ﹣x 0)﹣f (x ),则H′1(x )=g′(x )(x ﹣x 0). 由(Ⅰ)知,当x ∈[1,2]时,g′(x )>0,

故当x ∈[1,x 0)时,H′1(x )<0,H 1(x )单调递减;

当x ∈(x 0,2]时,H′1(x )>0,H 1(x )单调递增.

因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x )>H 1(x 0)=﹣f (x 0)=0,可得H 1(m )>0即h (m )>0,

令函数H 2(x )=g(x 0)(x ﹣x 0)﹣f (x ),则H′2(x )=g′(x 0)﹣g (x ).由(Ⅰ)知,g (x )在[1,2]上单调递增,故当x ∈[1,x 0)时,H′2(x )>0,H 2(x )单调递增;当x ∈(x 0,2]时,H′2(x )<0,H 2(x )单调递减.因此,当x ∈[1

,x 0)∪(x 0,2]时,H 2(x )>H 2(x 0)=0,可得得H 2(m )<0即h (x 0)<0,. 所以,h (m )h (x 0)<0.

(Ⅲ)对于任意的正整数p ,q ,且

令m=,函数h (x )=g(x )(m ﹣x 0)﹣f (m ).

由(Ⅱ)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点;

当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点.

所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h (x 1)=g(x 1)(﹣x 0)﹣f ()=0.

由(Ⅰ)知g (x )在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2), 于是|﹣x 0|=≥=. ,

因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,

所以f (x )在区间[1,2]上除x 0

外没有其他的零点,而≠x 0,故f

()≠0. 又因为p ,q ,a 均为整数,所以|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|是正整数, 从而|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|≥1.

所以|﹣x 0|≥

10.(2017•山东)已知函数f (x )=x 3﹣ax 2,a ∈R ,

(1)当a=2时,求曲线y=f(x )在点(3,f (3))处的切线方程;

(2)设函数g (x )=f(x )+(x ﹣a )cosx ﹣sinx ,讨论g (x )的单调性并判断有无极值,有极值时求出极值.

【解答】解:(1)当a=2时,f (x )=x 3﹣x 2,

∴f′(x )=x2﹣2x ,

∴k=f′(3)=9﹣6=3,f (3)=×27﹣9=0,

∴曲线y=f(x )在点(3,f (3))处的切线方程y=3(x ﹣3),即3x ﹣y ﹣9=0

(2)函数g (x )=f(x )+(x ﹣a )cosx ﹣

sinx=x 3﹣ax 2+(x ﹣a )cosx ﹣sinx , ∴g′(x )=(x ﹣a )(x ﹣sinx ),

令g′(x )=0,解得x=a,或x=0,

①若a >0时,当x <0时,g′(x )>0恒成立,故g (x )在(﹣∞,0)上单调递增,

当x >a 时,g′(x )>0恒成立,故g (x )在(a ,+∞)上单调递增,

当0<x <a 时,g′(x )<0恒成立,故g (x )在(0,a )上单调递减, ∴当x=a时,函数有极小值,极小值为g (a )=﹣a 3﹣sina

当x=0时,有极大值,极大值为g (0)=﹣a ,

②若a <0时,当x >0时,g′(x )>0恒成立,故g (x )在(﹣∞,0)上单调递增,

当x <a 时,g′(x )>0恒成立,故g (x )在(﹣∞,a )上单调递增,

.所以,只要取A=g(2),就有|﹣x 0|≥.

当a <x <0时,g′(x )<0恒成立,故g (x )在(a ,0)上单调递减, ∴当x=a时,函数有极大值,极大值为g (a )=﹣a 3﹣sina

当x=0时,有极小值,极小值为g (0)=﹣a

③当a=0时,g′(x )=x(x +sinx ),

当x >0时,g′(x )>0恒成立,故g (x )在(0,+∞)上单调递增,

当x <0时,g′(x )>0恒成立,故g (x )在(﹣∞,0)上单调递增, ∴g (x )在R 上单调递增,无极值.

11.(2017•天津)设a ,b ∈R ,|a |≤1.已知函数f (x )=x3﹣6x 2﹣3a (a ﹣4)x +b ,g (x )=ex f (x ).

(Ⅰ)求f (x )的单调区间;

(Ⅱ)已知函数y=g(x )和y=ex 的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:f (x )在x=x0处的导数等于0;

(ii )若关于x 的不等式g (x )≤e x 在区间[x 0﹣1,x 0+1]上恒成立,求b 的取值范围.

【解答】(Ⅰ)解:由f (x )=x3﹣6x 2﹣3a (a ﹣4)x +b ,可得f' (x )=3x2﹣12x ﹣3a (a ﹣4)=3(x ﹣a )(x ﹣(4﹣a )),

令f' (x )=0,解得x=a,或x=4﹣a .由|a |≤1,得a <4﹣a .

当x 变化时,f' (x ),f (x )的变化情况如下表:

∴f (x )的单调递增区间为(﹣∞,a ),(4﹣a ,+∞),单调递减区间为(a ,4﹣a );

(Ⅱ)(i )证明:∵g' (x )=ex (f (x )+f' (x )),由题意知, ∴,解得.

∴f (x )在x=x0处的导数等于0;

(ii )解:∵g (x )≤e x ,x ∈[x 0﹣1,x 0+1],由e x >0,可得f (x )≤1. 又∵f (x 0)=1,f' (x 0)=0,

故x 0为f (x )的极大值点,由(I )知x 0=a.

另一方面,由于|a |≤1,故a +1<4﹣a ,

由(Ⅰ)知f (x )在(a ﹣1,a )内单调递增,在(a ,a +1)内单调递减, 故当x 0=a时,f (x )≤f (a )=1在[a ﹣1,a +1]上恒成立,从而g (x )≤e x 在[x 0﹣1,x 0+1]上恒成立.

由f (a )=a3﹣6a 2﹣3a (a ﹣4)a +b=1,得b=2a3﹣6a 2+1,﹣1≤a ≤1.

令t (x )=2x3﹣6x 2+1,x ∈[﹣1,1],

∴t' (x )=6x2﹣12x ,

令t' (x )=0,解得x=2(舍去),或x=0.

∵t (﹣1)=﹣7,t (1)=﹣3,t (0)=1,故t (x )的值域为[﹣7,1]. ∴b 的取值范围是[﹣7,1].

12.(2017•新课标Ⅰ)已知函数 f (x )=ex (e x ﹣a )﹣a 2x .

(1)讨论 f (x )的单调性;

(2)若f (x )≥0,求a 的取值范围.

【解答】解:(1)f (x )=ex (e x ﹣a )﹣a 2x=e2x ﹣e x a ﹣a 2x ,

∴f′(x )=2e2x ﹣ae x ﹣a 2=(2e x +a )(e x ﹣a ),

①当a=0时,f′(x )>0恒成立,

∴f (x )在R 上单调递增,

②当a >0时,2e x +a >0,令f′(x )=0,解得x=lna,

当x <lna 时,f′(x )<0,函数f (x )单调递减,

当x >lna 时,f′(x )>0,函数f (x )单调递增,

③当a <0时,e x ﹣a >0,令f′(x )=0,解得x=ln(﹣),

当x <ln (﹣)时,f′(x )<0,函数f (x )单调递减,

当x >ln (﹣)时,f′(x )>0,函数f (x )单调递增,

综上所述,当a=0时,f (x )在R 上单调递增,

当a >0时,f (x )在(﹣∞,lna )上单调递减,在(lna ,+∞)上单调递增, 当a <0时,f (x )在(﹣∞,ln (﹣))上单调递减,在(ln (﹣),+∞)上单调递增,

(2)①当a=0时,f (x )=e2x >0恒成立,

②当a >0时,由(1)可得f (x )min =f(lna )=﹣a 2lna ≥0,

∴lna ≤0,

∴0<a ≤1,

③当a <0时,由(1)可得f (x )min =f(ln (﹣))=

∴ln (﹣)≤,

∴﹣2≤a <0,

,1] ﹣a 2ln (﹣)≥0, 综上所述a 的取值范围为[﹣

2


© 2024 实用范文网 | 联系我们: webmaster# 6400.net.cn