钢纤维混凝土性能与应用前景

钢纤维混凝土性能与应用前景

2006年08月03日 星期四 17:18

钢纤维混凝土就是在普通混凝土中掺入适量钢纤维而成的一种新型复合材料,近年来在国内外得到迅速发展。它克服了混凝土抗拉强度低、极限延伸率小、性脆等缺点,具有优良的抗拉、抗弯、抗剪、阻裂、耐疲劳、高韧性等性能,已在建筑、路桥、水工等工程领域得到应用。

一、钢纤维的基本性质

1.钢纤维的类型及特征参数

钢纤维按材质分,有普通碳钢钢纤维和不锈钢钢纤维,其中以普通钢钢纤维用量居多;按外形分有长直形、压痕形、波浪形、弯钩形、大头形、扭曲形;按截面形状分有圆形、矩形、月牙形及不规则形;按生产工艺分有切断型、剪切型、铣削型及熔抽型;按施工用途分有浇筑用钢纤维和喷射用钢纤维。

为满足钢纤维的增强效果与施工性能,通常采用钢纤维长度为15~60mm,直径或等效直径为0.3~1.2mm,长径比为30~100,纤维的体积掺量为0.5%~2%。

2.钢纤维的主要性能

钢纤维的主要性能包括抗拉强度与黏结强度。试验表明,由于普通钢纤维混凝土主要是因钢纤维拔出而破坏,并不是因钢纤维拉断而破坏,因此钢纤维的抗拉强度一般能满足使用要求,而其与混凝土基体界面的黏结强度是影响钢纤维混凝土性能的主要因素。黏结强度除与基体的性能有关外,就钢纤维本身而言,与钢纤维的外形和截面形状有关。

二、钢纤维混凝土的基本性能

国内外对钢纤维的作用机理和钢纤维混凝土的基本性能做了大量的研究,现归纳如下:

钢纤维混凝土中乱向分布的短纤维主要作用是阻碍混凝土内部微裂缝的扩展和阻滞宏观裂缝的发生和发展。在受荷(拉、弯)初期,水泥基料与纤维共同承受外力,当混凝土开裂后,横跨裂缝的纤维成为外力的主要承受者。因此钢纤维混凝土与普通混凝土相比具有一系列优越的物理和力学性能。

1.强度和重量比值增大

这是钢纤维混凝土具有优越经济性的重要标志。

2.具有较高的抗拉、抗弯、抗剪和抗扭强度

在混凝土中掺入适量钢纤维,其抗拉强度提高25%~50%,抗弯强度提高40%~80%,抗剪强度提高50%~100%。

3.具有卓越的抗冲击性能

材料抵抗冲击或震动荷载作用的性能,称为冲击韧性,在通常的纤维掺量下,冲击抗压韧性可提高2~7倍,冲击抗弯、抗拉等韧性可提高几倍到几十倍。

4.收缩性能明显改善

在通常的纤维掺量下,钢纤维混凝土较普通混凝土的收缩值降低7%~9%。

5.抗疲劳性能显著提高

钢纤维混凝土的抗弯和抗压疲劳性能比普通混凝土都有较大改善。当掺有1.5%钢纤维抗弯疲劳寿命为1×106次时,应力比为0.68,而普通混凝土仅为0.51;当掺有2%钢纤维混凝土抗压疲劳寿命达2×106次时,应力比为0.92,而普通混凝土仅为0.56。

6.耐久性能显著提高

钢纤维混凝土除抗渗性能与普通混凝土相比没有明显变化外,由于钢纤维混凝土抗裂性、整体性好,因而耐冻融性、耐热性、耐磨性、抗气蚀性和抗腐蚀性均有显著提高。掺有1.5%的钢纤维混凝土经150次冻融循环,其抗压和抗弯强度下降约20%,而其他条件相同的普通混凝土却下降60%以上,经过200次冻融循环,钢纤维混凝土试件仍保持完好。掺量为1%、强度等级为CF35的钢纤维混凝土耐磨损失比普通混凝土降低30%。掺有2%钢纤维高强混凝土抗气蚀能力较其他条件相同的高强混凝土提高1.4倍。钢纤维混凝土在空气、污水和海水中都呈现良好的耐腐蚀性,暴露在污水和海水中5年后的试件碳化深度小于5mm,只有表层的钢纤维产生锈斑,内部钢纤维未锈蚀,不像普通钢筋混凝土中钢筋锈蚀后,锈蚀层体积膨胀而将混凝土胀裂。

三、钢纤维混凝土设计与施工规程说明

我国于1996年出版了《钢纤维混凝土试验方法》CECS13:89和《钢纤维混凝土结构设计与施工规程》CECS38:92,但本规程只对钢纤维混凝土结构不同于混凝土结构设计与施工的专门要求作出规定。在进行钢纤维混凝土结构设计和施工时,尚应与《水工钢筋混凝土结构设计规范》SL/T191-96和《水工混凝土施工规范》DL/T5144-2001配合使用。

四、钢纤维混凝土在水利水电工程中的应用

1.支护工程

钢纤维混凝土由于抗拉、抗弯、抗剪强度高,能承受较大的围岩和土体的变形作用而保持良好的整体性,因此可用于隧洞支护、山体护坡等工程。如浙江省开化县齐溪水电站有压隧洞在两个工程段内采用喷射钢纤维混凝土衬砌,使围岩能在较大程度上发挥作用,减少了衬砌厚度,由原来的钢筋混凝土衬砌厚度500mm减至钢纤维混凝土喷衬厚度60mm,省去了钢筋加工和绑扎工程量,同时不需立模和回填灌浆,造价由每延米1175元减至398元,施工工作量减少3/4。工程至今正常运行。

2.储水、防渗、输水管道工程

钢纤维混凝土由于抗裂性能好、收缩率低,因而防水、防渗性能较好,可用于低压输水管、蓄水池、地下室防渗等工程。而在储水和防渗结构中钢纤维混凝土可作防水层,有时也可兼作结构层代替钢筋混凝土。如浙江省余姚岭水库混凝土坝面多次出现裂缝、下游面局部出现渗水,在混凝土面层采用喷射钢纤维混凝土,厚度50mm,达到了防渗效果,与高频振荡钢丝网水泥砂浆防渗面板相比,具有工艺简单、施工方便、造价低等优点。

3.高速水流冲刷磨损部位

钢纤维混凝土具有较高的抗冲磨、抗气蚀能力,因此可用于溢洪道、消力池、闸底板等承受高速水流作用的部位。如:大渡河支流南桠河石棉二级电站,该电站是引水式径流电站,1965年建成发电。当年汛期后,冲砂闸底板和护坦被冲成深槽,最深处达0.7m,埋设的28mm钢筋全部磨断,1968年和1969年先后两次用辉绿岩铸石板、环氧混凝土、呋喃混凝土进行修补加固对比试验,除环氧混凝土在一个汛期内磨损10~50mm外(后来也被冲毁了),其余材料不到一个汛期全部被砸碎冲掉。1977年在毁坏处采用硅锰渣铸石板、改性环氧砂浆、胶乳水泥砂浆、MC尼龙板、高强混凝土、钢纤维混凝土等材料进行补强试验,结果表明钢纤维混凝土是较好的抗冲耐磨材料。

4.处于腐蚀环境中的构件

钢纤维混凝土具有良好的耐腐蚀性能,可用于海水等腐蚀环境中的闸门、输水管道等构件的防蚀层或结构层。

5.动力荷载作用部位和抗震结构节点

由于钢纤维混凝土具有较高的抗拉强度、断裂韧性和抗疲劳等性能,因此,可用于承受动力荷载的机墩、抗震结构的框架节点等部位。

6.复杂应力部位

钢纤维混凝土中的钢纤维一般呈三维乱向分布,沿每个方向都有增强和增韧作用。钢纤维对混凝土结构复杂应力区增强是非常有利的,而且容易浇筑成型,比钢筋更能适应各种复杂的结构形式。此外,钢纤维限制混凝土裂缝的作用也是钢筋不能相比的。因此,可用于大坝内廊道、泄水孔等孔口复杂应力区和牛腿等受弯构件的抗剪以及板的抗冲切部位等。

7.部分应用钢纤维混凝土的水利水电工程

浙江省淳安县河村水库泄洪洞支护,浙江省文成县百丈际水电站引水隧洞、葛洲坝二江泄水闸、三门峡泄水排砂底孔、贵州乌江渡水电站、江西大港水电站的工程修补,湖南省永川市向阻坝渡槽局部槽身加强,浙江省玉环县四海闸闸槽二期,三峡临时船闸闸槽二期,杭州市德胜坝闸门门体等。钢纤维混凝土在以上工程应用均取得良好效果。

五、结 语

①钢纤维混凝土的优越性能及在水利水电工程中成功的应用表明:钢纤维混凝土不但可以解决钢筋混凝土难以解决的裂缝、耐久性等问题,而且用于输水隧洞等工程可以大幅度降低造价。因此,钢纤维混凝土在水利水电工程中具有广阔应用前景。 ②目前钢纤维混凝土在应用中主要的问题是钢纤维生产成本较高,造成钢纤维混凝土初始造价较高。为了使钢纤维混凝土得到广泛应用,一方面,应努力降低钢纤维生产成本从而降低钢纤维混凝土的造价;另一方面,在应用时,不应只计一次性投资,而应考虑钢纤维混凝土的优越使用性能、较低的维修费和使用寿命延长等综合经济效益。

钢纤维混凝土材料在旧混凝土路面修补工程中的应用

冲击、耐疲劳、韧性等性能都有显著提高,它不仅可使面层减薄,缩缝

间距加大,改善路面的使用性能,延长路面使用寿命,而且还可节省工

程造价,缩短施工工期。

关键词:钢纤维混凝土;普通混凝土;旧混凝土路面;修补工程;应用

随着国民经济建设和公路交通事业的飞速发展,城市道路和国道干

线公路上的车辆荷载及密度越来越大,行驶速度越来越快,致使路面的

损坏也日趋严重起来。特别是对损坏的水泥混凝土路面而言,它不仅翻

修投资大,且施工周期较长,严重

影响交通畅通及行车安全。如用普通水泥混凝土修复路面虽有强度高,

板块性好,有一定的抗磨性及承受气象作用的耐久性好等特点,但它的

最大缺陷是脆性大、易开裂、抗温性差,路面板块容易受弯折而产生断

裂,所以就要求路面面板应有足够的抗弯、抗拉强度和厚度。用钢纤维

混凝土修筑路面,就是意将钢纤维均匀地分散于基体混凝土中(与混凝

土一起搅拌),并通过分散的钢纤维,减小因荷载在基体混凝土引起的

细裂缝端部的应力集中,从而控制混凝土裂缝的扩展,提高整个复合材

料的抗裂性。同时由于混凝土与钢纤维接触界面之间有很大的界面粘结

力,因而可将外力传到抗拉强度大、延伸率高的纤维上面,使钢纤维混

凝土作为一个均匀的整体抵抗外力的作用,显著提高了混凝土原有的抗

拉、抗弯强度和断裂延伸率。特别是提高了混凝土的韧性和抗冲击性。

实践证明,采用钢纤维混凝土这一新型高强复合材料对路面修理,既可

提高路面的抗裂性、抗弯曲、耐冲击和耐疲劳性,而且可改善路面的使

用性能,延长使用寿命从而减少老路开挖,对节省工程造价等具有重要

的经济效益和社会效益;为提高道路补强与改造提供了良好的途径。

1 基本要求

1.1 钢纤维混凝土材料

钢纤维混凝土就是在一般普通混凝土中掺配一定数量的短而细的钢纤维

所组成的一种新型高强复合材料。由于钢纤维阻滞基体混凝土裂缝的产

生,不但具有普通混凝土的优良性能,而且具有良好的抗折、抗冲击、

抗疲劳以及收缩率小、韧性好、耐磨耗能力强等特性。可使路面厚度减

薄50%以上,缩缝间距可增至15m~30m,不用设胀缝和纵缝。钢纤维混

凝土用钢纤维类型有圆直型、熔抽型和剪切型钢纤维。其长度分为各种

不同规格,最佳长径比为40~70,截面直径在0.4mm~0.7mm范围内,

抗拉强度不低于380MPa。在施工时钢纤维在混凝土中的掺入量为1.0%

~2.0%(体积比),但最大掺量不宜超过2.0%。水泥采用425#~

525#普通硅酸盐水泥,以保证混合料具有较高的强度和耐磨性能。钢

纤维混凝土用的粗骨料最大粒径为钢纤维长度的2?3。不宜大于20mm。

细集料采用中粗砂,平均粒径0.35mm~0.45mm,松装密度1.37g/cm3。

砂率采用45%~50%。

1.2 钢纤维混凝土配合比

钢纤维混凝土混合料配合比的要求首先应使路面厚度减薄,其次是保证

钢纤维混凝土有较高的抗弯强度,以满足结构设计对强度等级的要求即抗压强度与

抗折强度,以及施工的和易性。钢纤维混凝土配合比设计基本按以下步骤进行。

(1)根据强度设计值以及施工配制强度提高系数,确定试配抗压

强度与抗折强度;钢纤维混凝土抗折强度设计值的确定:

fftm=ftm(1+atmPfLf/df)

式中 fftm———钢纤维混凝土抗折强度设计值;

ftm———与钢纤维混凝土具有相同的配合材料、水灰比和相近稠度

的素混凝土的抗折强度设计值;

atm———钢纤维对抗折强度的影响系数(试验确定);

Pf———钢纤维体积率,%;

Lf/df———钢纤维长径比,当ftm<6.0N/mm2时,可按表1采用。

(2)根据试配抗压强度计算水灰比;

(3)根据试配抗压强度,确定钢纤维体积率,一般浇筑成型的结构范围在0.5%~2.0%之间;

(4)按照施工要求的稠度确定单位体积用水量,参照表2;

(5)确定砂率,见表3;

(6)计算混合材料用量,确定试配配合比;

(7)按照试配配合比进行拌合物性能试验,调整单位体积用水量和砂率,确定强度试验用基准配合比;

(8)根据强度试验结果调整水灰比和钢纤维体积率,确定施工配合比。

试验结果表明,在经验和计算的基础上确定水泥用量、砂率及水灰

比,并根据不同配比时的钢纤维混凝土强度进行试验(见表4),当水

泥用量在380kg?m3~400kg?m3时强度较高,但此时砂率较小,

砂石中有分离现象。因此将砂率调到0.48,如此强度虽有降低,但其

余性能却可得到改善。为此,调整最佳配比即水泥∶黄砂∶碎石∶水=

1∶2.16∶2.34∶0.48。1.3 钢纤维混凝土拌和

为防止钢纤维混凝土在搅拌时纤维结团,在施工时每拌一次的搅拌

量不宜大于搅拌机额定搅拌量的80%。采用滚动式搅拌机拌和,在搅拌

混凝土过程中必须保证钢纤维均匀分布。为保证混凝土混合料的搅拌质

量,采用先干后湿的拌和工艺。投料顺序及搅拌时间为:粗集料→钢纤

维(干拌1min)→细集料→水泥(干拌1min),其中钢纤维在拌和时分

三次加入拌和机中,边拌边加入钢纤维,再倒入黄砂、水泥,待全部料

投入后重拌2min~3min,最后加足水湿拌1min。总搅拌时间不超过6mi

n,超搅拌会引起湿纤维结团。按此程序拌出的混合料均匀。尚若在拌

和中,先加水泥和粗、细集料,后加钢纤维则容易结成团。而且纤维团

越滚越紧,难以分开,一旦发现有纤维结团,就必须剔除掉,以防止因

此而影响混凝土的质量。

1.4 钢纤维混凝土浇捣

钢纤维混凝土浇捣与普通混凝土一样,浇筑和振捣是施工中的重要环节

,直接影响钢纤维混凝土的整体性和致密性。不同之处就是其流动性较

差,在边角处容易产生蜂窝,因此,边角部分可先用捣棒捣实。板角采

用插入式振动器振捣,然后用夯梁板来回整平。在混凝土面层抹平过程

中,因钢纤维直径较粗而易冒出路面,影响到行车安全,故在施工时需

注意清除。

2 工程实例

某二级公路水泥混凝土路面修补工程段全长112m,宽2×3m,修补前路

面板呈破碎、断裂状,原为一般普通混凝土浇筑,部分板底基层下沉。

现用钢纤维混凝土修补路面,基层补强采用C15素混凝土浇筑,旧混凝

土路面平均凿除深度25cm(包括基层松动部分),拟采用12cm厚、C30

钢纤维混凝土浇筑路面。

2.1 施工材料

2.1.1 原材料

水泥:425#普通硅酸盐水泥;

细集料:用中粗砂,平均粒径0.35mm~0.48mm,含泥量<2%;

粗集料:碎石5mm~20mm,含泥量<1%,质地坚硬;

钢纤维:选用长度30mm、当量直径0.60mm由浙江某厂生产的低碳结

钢剪切扭曲型,型号DN-30,其强度380MPa以上。该产品性能稳定,使

用效果良好。

2.1.2 配合比

钢纤维混凝土配合比设计按照抗折强度和抗压强度双控标准要求及施工

的工作度采用以抗折强度为主要指标进行设计。设计抗折强度6.5MPa

、抗压强度35MPa。经试验室进行几种配比方案确定:水泥∶黄砂∶碎

石∶钢纤维∶水并强度试验,结果见表5。

2.2 施工工艺

2.2.1 基层处理及路面浇筑

在钢纤维混凝土浇筑前,为提高水泥混凝土面层下基层和垫层的刚度,

做好对旧混凝土板及板底基层

的处理工作,即在破损板及板底脱空破裂的旧混凝土板块凿除后,对部

分板底基层进行补强处理。凿除旧混凝土板时,凿除深度必须满足原路

面设计要求,再将原基层松动部分全部清除。被清除后的基坑及深度一

律用C15贫混凝土进行处理。待混凝土半干状态时即可浇筑路面。按要

求先用C15普通混凝土浇筑至路面面层厚度12cm时,经底面层整平处理

后再用钢纤维混凝土浇筑。

2.2.2 钢纤维混凝土搅拌

钢纤维混凝土搅拌采用滚筒式搅拌机。为使钢纤维在混凝土中分散均匀

,采用二次投料三次搅拌法,即先将石子和钢纤维干拌1min,加入砂子

、水泥再干拌1min,最后注水湿拌1.5min左右,总搅拌时间控制在6m

in内,搅拌时间过长会形成湿纤维团。且每次的搅拌量宜在搅拌机公称

容量的1?3以下。

2.2.3 运输与浇筑

混凝土运输采用自卸运输车,运至施工地点进行浇筑时的卸料高度不得

超过1.5m,以防混凝土离析。钢纤维混凝土采用人工摊铺,用人工将

其大致摊铺整平,摊铺后用平板振动器振捣,振捣的持续时间以混凝土

停止下沉,不再冒气泡并泛出水泥浆为准,且不宜过振。振捣时辅以人

工找平,混凝土整平采用振动梁振捣拖平,再用钢滚筒依次滚压进一步

整平,整平的表面不得裸露钢纤维。在做面时需分两次进行,即先找平

抹平,待混凝土表面无泌水时,再做第二次抹平,抹平后沿模板方向拉

毛,拉毛深度1mm~2mm。拉毛时避免带出钢纤维,如采用滚式压纹器进

行处理则效果更佳。

2.2.4 养护与切缝

钢纤维混凝土设有多种切缝。胀缝与路中心线垂直,缝壁必须垂直,缝

隙宽度必须一致,缝中不得有连浆现象,缝隙内应及时浇灌填缝料,当

混凝土达到强度25%~30%时,采用切缝机进行缩缝切割,切缝深度3

cm,缩缝设置16m?道。施工缝位置宜与胀缝或缩缝设计位置吻合,施

工缝与路中心线垂直,不设置传力杆。对胀缝、缩缝均采用10#石油沥

青,灌式填缝。

混凝土做面完毕后,及时采用湿法养护,终凝后及时覆盖草袋,并每天

均匀浇水,保持潮湿状态,养护10d~15d。与此同时做好封闭交通,待

强度测试达到规定要求后即可开放交通。

2.3 施工质量控制

钢纤维混凝土的质量除对原材料、配合比以及施工过程的主要环节进行

控制外,还重点对钢纤维混凝土的搅拌、钢纤维的投入以及混凝土振捣

的控制,同时按规定对每天所浇筑混凝土的28d抗折、断块抗压强度进

行检验,均达到了设计要求,使平整度、坍

落度、主要技术指标得到有效控制。

3 经济与社会效益

从经济和社会效益分析,钢纤维混凝土路面与普通水泥混凝土路面相比

,其特点:①面层厚度可减薄至1/2以上,使施工工期缩短,因此节约

原材料及减少工程量后所带来的一切费用;②路面使用寿命延长因此而

节省的费用;③减少缩缝带来的材料、人工等所节省的费用;5节省养

护、减少时间延误及维修费用;除此以外,还有路面质量好,接缝少,

延长车辆使用寿命等费用。综合分析,对于旧混凝土路面,若采用钢纤

维混凝土进行罩面修复,则一次性投资的费用比挖掉重建混凝土路面要

节省许多。同样,从一次性投资、使用年限、维修费用、资金的时间价

值来全面评价钢纤维混凝土路面工程的经济效益,与新铺沥青混凝土路

面评价综合效益,钢纤维混凝土路面虽一次性投资较前者高,但从其维

修费用、使用年限的不同考虑,以及和资金的时间效益,用年成本法计

算其等值年金,结果表明钢纤维混凝土路面每年支出的费用比沥青混凝

土路面要低35%。采用钢纤维混凝土修补法,不但可使钢纤维混凝土的

质量及其增强效果得到保证,而且还可提前开放交通,具有显著的经济

效益和社会效益。

4 结语

钢纤维混凝土自发展以来,已在公路路面、桥面、机场跑道等工程中得

到广泛应用,同时也取得了一定的经济效益和社会效益。它除了具有良

好的抗弯强度外,而且还具有优异的抗冲击、抗开裂性能。在对钢纤维

混凝土进行的冲击荷载等试验研究中表明:掺以体积率为1%~2%的钢

纤维增强混凝土与基体比较,其抗冲击强度可提高10倍~20倍,弯曲韧

性可提高20倍左右,抗弯强度可提高1倍~6倍,抗拉强度可提高2倍左

右,疲劳强度提高50%,抗裂强度可提高2倍,抗压强度可提高10%~

30%。由此可见,钢纤维混凝土的抗裂性与抗冲击是非常优异的。此外

,用钢纤维混凝土修筑旧混凝土路面还能达到早期强度高,提前通车的

目的。

参考文献

[1]卢亦焱.钢纤维混凝土材料及其在路面工程中的应用.公路,1999,4

[2]中国工程建设标准化协会标准.钢纤维混凝土结构设计与施工规程.北京:中国建筑工业出版社,1992,6

[3]中国工程建设标准化协会标准.钢纤维混凝土试验方法.北京:中国建筑工业出版社,1989,12

[4]蒙云.钢纤维混凝土新型路面设计与施工.重庆:重庆大学出版社,1995,7 [5]李启棣,吴淑华.钢纤维混凝土的特性及其应用.铁道建筑,1989(1)

钢纤维混凝土具有比普通混凝土优良的抗弯拉、抗裂、抗冲击、耐磨等物理力学性能,在国外已经大量应用于机场、路面、桥面、停车场及工业地面等工程。我院针对已建码头混凝土铺面方块道面的结构和损坏特点,对钢纤维混凝土用作码头道面改造和维修材料进行了研究,并成功进行了现场应用,取得了较好的使用效果。

混凝土掺钢纤维后,抗折强度显著提高,尤其适合受弯拉应力较高的道路工程。对于新建路面工程或已建路面的改造工程,可通过调整钢纤维掺量和混凝土的配合比,配制出抗折强度达9.0MPa以上的钢纤维混凝土,以满足不同结构的道面强度设计要求。

我院在2000年结合深圳凯丰码头9#泊位码头道面改造工程,对钢纤维混凝土进行了深入的研究,这是钢纤维混凝土在码头路面工程中的首次成功应用。

主要技术指标如下:

钢纤维混凝土水灰比:0.29~0.40

7天抗折强度:7.4MPa 28天抗折强度:9.2MPa

7天抗压强度:61.5MPa 28天抗压强度:74.0MPa

40T叉车压力试验: 弹性模量:36000MPa 板底应力:1.89~3.35MPa

2001年5月10日,钢纤维混凝土用于码头堆场及道面改造工程成果评审会在深圳赤湾石油大厦举行,由赵国藩院士等9位著名专家对成果进行了评审。

专家委员会评审认为该成果研究工作内容系统、全面,试验和检测数据真实、可靠,现场应用情况证明:路面状况良好,未发现开裂、断裂情况;路面行车平稳,对轮胎的磨损小。该成果首次将钢纤维混凝土应用于码头堆场和道面改造工程,通过采用必要的技术手段配制出高抗折强度的钢纤维混凝土,在路面板厚度只有120mm的情况下,满足码头堆场和道面的实际荷载要求。由于施工工艺简便,无需翻挖和重新建造基础垫层,从而可大幅减少路面施工的工程量和材料用量,工期短,工效快,经济效益和社会效益显著。

专家们认为该成果达到国内领先水平,建议在港口码头堆场和道面及市政工程的路面维修工程中推广应用。

钢纤维混凝土在桥面铺装的应用与性能

分析

作者:汪军 转贴自:本站原创 点击数:77

摘要:

以南宁市富宁立交跨线桥为例,对钢纤维混凝土在桥面铺装的应用,从机理性能、原材料的选用、配合比的设计原则及步骤、施工工艺进行阐述,并提出施工要求。

钢纤维混凝土设计施工增强性能[ 中图分类号]U443.33[ 文献标识码]B1. 项目概况富宁立交

K0+026.497 跨线是南宁市较早采用钢纤维混凝土进行桥面铺装的大型桥梁。该桥主桥上构采用3×25m 先简支后连续的预应力混凝土空心板桥,下构为钢筋混凝土圆柱桥墩,桩基础、桩柱埋置式桥台,桥梁全长81.0m,.. 总宽41.0m,2×12.75m( 机动车道)+3 ×1.0m (分隔带)+2 ×3.5m (非机动车道)+2 ×2.0m (人行道宽2.3~3.0m)+2×.. 0.25m (栏杆)。桥面铺装241.8m3 ,.. 为厚8cm 的钢筋混凝土,采用C40号混凝土,为防止桥面铺装过早地出现裂纹影响结构使用,钢纤维用量按砼的体积百分率计,采用1%~1.2%,.. 取得了良好的效果。2. 钢纤维混凝土的技术指标普通混凝土抗压强度等级C40 钢纤维混

凝土的抗折强度5.0MPa 钢纤维混凝土的抗压强度50MPa 坍落度45mm

3. 原材料

3.1 钢纤维的选择

通过筛选,选用80 年代国际开始发展起来的铣削钢纤维,作为该项目桥面铺装混凝土的增强材料,具体采用上海哈瑞克斯金属制品有限公司生产的抗拉强度≥700MPa 的Ami04-32-600 型铣削型钢纤维,该钢纤维在混凝土中的横纵截面均有锯齿形边,加上两端有带勾的锚尾,其与砂浆的粘结力成倍增加。

3.2 其它材料的选择

水泥, 广西正大“狮座”42.5R普通硅酸盐水泥; 碎石,5~32mm 石灰岩,级配良好; 砂,五塘砂,级配良好,细度模数

2.84; 减水剂,

YF-Ⅱ型缓凝高效减水剂,掺量1.7%; 膨胀剂,低掺、低碱高效膨胀剂。

4. 钢纤维混凝土配合比设计

钢纤维混凝土的拌合料是由水泥、水、粗细骨料、钢纤维及必要时掺入化学外加剂或掺加剂,按一定比例配制而成,拌合料各组成材料的正确选择,对钢纤维混凝土的物理力学性能和施工有重要的影响。桥面铺装层钢纤维混凝土配合比设计,应主要满足设计弯拉强度与施工的和易性,弯拉强度随纤维增加而增加,但和易性随纤维增加而降低,因为混凝土掺入钢纤维后,由于内部摩擦力增大,其流动性显著降低,为此,应适当增加用水量。按照《钢纤维混凝土试验方法》(CECS 13:89).. 进行试配,并考虑以下原则:

(1)为提高弯拉强度,钢纤维长径比应尽量大,但为了和易性,长径比又应尽量小。该工程选用钢纤维长径比为35~40,合适的长径比为35~50。

(2)含砂率:与粗集料粒径及Vf 有关,钢纤维混凝土含砂率随Vf 增大而增大,随粗集料粒径增大而减小。该工程取值为45%。Vf为钢纤维的体积率(图纸设计为0.6%,通过试配取0.75%)。

(3)水灰比: W /C=0.38,一般为0.35~0.40范围。

(4)用水量:在考虑钢纤维混凝土和易性时,不能象普通混凝土一样只考虑坍落度,因为钢纤维混凝土在振捣前后工作能相差很大。

(5)水泥用量:在钢纤维混凝土中,水泥用量要比普通混凝土大,每立方米混凝土水泥用量大于400kg。富宁立交跨线桥桥面铺装采用人工摊铺的特点和施工方案,对水灰比、砂率、水泥用量、钢纤维的掺量、坍落度等各主要控制指标要求进行试验室试配后,配合比按重交通量水泥混凝土路面设计,设计抗拉强度5.0MPa,每立方米混凝土各种材料用量见表1。

混凝土配合比

根据表1所示,该工程每立方米混凝土材料用水量185kg,钢纤维体积率Vf为0.75%,测得混合物工作度在8~12s,符和易性

要求。

5.钢纤维混凝土桥面铺装施工

5.1 架立钢筋安装

用风钻按施工图要求尺寸的间距进行钻孔,进行架立钢筋的安装,并用水泥浆锚固。5.2 凿毛、清洗与测量放样对已完成桥面整体化层铺装的桥面进行标高的联测,对局部存在有水泥浮浆的地方人工凿除,用高压水冲洗桥面,保证桥面无混凝土浮浆、浮尘等杂物。对桥面进行板块划分,按分块图测出各控制点的模板安装控制标高(设计标高)。

5.3 钢筋网安装

开铺前对桥面所有预埋钢筋、锚固架立钢筋、预埋件(如排水管等)进行全面的检查,保证满足设

计和规范的要求。钢筋接头在纵缝位置须错开。

5.4 模板安装和板块划分

模板用槽钢,槽钢底用水泥砂浆或砂填塞,防止漏浆,内侧刷脱模剂。标高带靠近人行道立缘石一侧由于无槽钢模板,可弹墨线控制其标高。

5.5 钢纤维混凝土拌和

钢纤维混凝土的搅拌原则是先干拌后湿拌。为防止钢纤维混

路桥天地

凝土在搅拌时纲纤维结团,不宜将水泥与钢纤维直接拌和,应采用“集料+ 钢纤维+ 集料+ 水泥”的投料方法,且在施工时每拌一次的搅拌量不宜大于搅拌机额定搅拌量的80%。采用滚动式搅拌机拌和,在搅拌混凝土过程中必须保证钢纤维均匀分布,应采用钢叉抖料法,即将过磅的钢纤维用钢叉投入拌和机料斗中,一层钢纤维一层砂,使砂起到分散隔离作用。为保证混凝土混合料的搅拌质量,采用先干后湿的拌和工艺。应根据拌和物的粘聚性、均匀性及强度稳定性试拌,确定最佳拌和时间。钢纤维与水泥、粗细骨料和砂先干拌不得少于1min,在拌和时钢纤维分三次加入拌和机中,最后加水湿拌35s,总搅拌时间不超过6min,超搅拌会引起钢纤维结团。一旦发现有钢纤维结团,就必须剔除掉;有锈蚀、易结块的钢纤维不得使用,以防止因此而影响混凝土的质量。采用拖拉机运输至浇筑点。施工时注意预留出拖拉机通道。

5.6 混凝土的摊铺及振捣

由于混凝土坍落度很小,凝结时间快,拌和料从搅拌机出料后,运至铺筑地点摊铺,振捣做面,直至浇筑完毕。严格掌握振捣方法,采用“先插后平”振捣方法,插振时为减少钢纤维向振动棒聚集的集束效应,将振动棒以线路方向插入,快插慢拔,迫使钢纤维呈纵向条状集束,使钢纤维排列有利于板面收缩应力、温度应力及荷载传递。采用平板振动器可将表面竖立的钢纤维和碎石压下,砂浆提上来,有利于提高混凝土表面耐磨度。

5.7 切缝和灌缝

拆除模板后,在混凝土强度达到8~15MPa时切缝(8小时左右),.. 为保证在切缝过程不产生钢纤维被带起,切缝其强度应大于普通混凝土5MPa 左右。灌缝,要求用水清洗干净缝中的尘土后待水干,嵌入直径为15mm 多孔泡沫塑料后用沥青灌缝,要求填料饱满、均匀、厚度一致,其效果达到不缺失、不开裂,以保证该处不渗水。

5.8 硬刻槽

在路面强度达到6~12MPa 后用刻槽机刻制横向抗滑沟槽,采用槽间距25mm 、槽宽2.5mm 、槽深3.5mm 的等间距矩形槽。

5.9 桥面铺装层的养生

薄膜覆盖7d,.. 洒水养生14d 。

6. 钢纤维混凝土桥面铺装性能评价

6.1 抗折强度、抗压强度、劈裂抗拉强度

混凝土的强度试验是将养护到规定28d 龄期的小梁试件(150mm×150mm×550mm).. 按三分点法测定其抗折强度,然后用立方体试件(150mm×150mm×150mm).. 进行抗压强度试验。桥面铺装试验段养护到规定28d 龄期后在板中间部位钻孔取样,试件尺寸直径150mm,.. 厚度与铺装面同为8cm,.. 进行劈裂抗拉强度试验。结果见表2 。

试验结果表明,钢纤维混凝土的强度比同配合比的普通混凝土有所提高,其中抗折强度增长了22.18%,.. 抗压强度增长5.41%,劈裂抗拉强度增长69.56% 。试验结果很明显地显示出,掺入钢纤维能较大幅度地提高混凝土的抗折强度和劈裂抗拉强度,使混凝土的脆性有所降低,但抗压强度增加很少。

6.2 耐磨性能

试验按T0527-1994 的规程进行,制作混凝土试件尺寸为150mm×150mm×70mm 。养护至28d 进行试验,试验首先将试件提前1d从养护室中取出,自然干燥12h,放入60℃.. 的烘箱中继续烘12h;然后将试件放在带有花轮磨头的TMS-04型水泥砂耐磨试验机的水平转盘上,在200N 的负荷下磨削50h,.. 并称量试验前后的质量,按下式计算单位面积的磨耗量。G=[(M0-M1)/0.0125]×100 式中:G ——单位表面积磨损量(kg/m2); M0 ——试件的原始质量(kg);M 1 ——试件磨削后的质量(kg); 0.0125 ——试件磨损面积(m2) 。

试验计算结果:

普通混凝土为5.829kg/m2 ; 钢纤维混凝土为4.418kg/m2。可见钢纤维混凝土耐磨性优于普通混凝土,耐磨性能提高了24.21% 。

7. 钢纤维在混凝土中的增强性能机理

钢纤维混凝土中均匀无序乱向分布的短纤维的主要作用是阻碍混凝土内部微裂缝的扩展和防止宏观裂缝的发生。因此对于混凝土的抗拉强度和主要由拉应力控制的抗剪、抗弯、抗扭强度有明显的改善作用, 即使在混凝土发生一定裂缝的况下, 仍然对混凝土的承载能力具有很大的贡献, 只有当纤维从混凝土中拔出的时候,抗拉强度才会下降。钢纤维对混凝的抗弯、抗压疲劳性能的改善也比较明显。而钢纤维对混凝土的抗压强度影响不大。通过试验证明,钢纤维混凝土破坏时,都是纤维从混凝土拔出,而不是拉断,因此改善基体与钢纤维的粘结力,成为提高钢纤维混凝土力学性能的主要目标。

8. 结论

在桥面铺装中采用钢纤维混凝土结构,除了具有与普通钢纤维混凝土一样抗裂性强、耐老化、耐冲

击、耐疲劳、抗冻抗渗性好等优良性外,还快硬化、超早强、耐磨损,可以提高混凝土的抗拉强度,改善抗冲击力、抗疲劳等性能,且施方便,浇注方法及浇注后外观基本与普通混凝土相同,造价相对合理。从实际效果来看,富宁立交跨线桥于2001 年建成至今,桥面安全通畅,经济效益和社会效益较好。


© 2024 实用范文网 | 联系我们: webmaster# 6400.net.cn