电视机发展史

1883年圣诞节 德国电气工程师尼普柯夫用他发明的“尼普柯夫圆盘”使用机械扫描方法,作了首次发射图像的实验。每幅画面有24行线,且图像相当模糊。 1908年 英国肯培尔.斯文顿、俄国罗申克无提出电子扫描原理,奠定了近代电技术的理论基础。

1923年 美籍苏联人兹瓦里金发明静电积贮式摄像管。年发明电子扫书描式显像管,这是近代电视摄像术的先驱。

1925年 英国约翰.洛奇.贝尔德,根据“尼普科夫圆盘”进行了新的研究工作,发明机械扫描式电视摄像机和接收机。当时画面分辨率仅30行线,扫描器每秒只能5次扫过扫描区,画面本身仅2英寸高,一英寸宽。在伦敦一家大商店向公众作了表演。

1926年 贝尔德向英国报界作了一次播发和接收电视的表演。

1927——1929年 贝尔德通过电话电缆首次进行机电式电视试播;首次短波电视试验;英国广播公司开始长期连续播发电视节目。

1930年 实现电视图像和声音同时发播。

1931年 首次把影片搬上电视银幕。 ——人们在伦敦通过电视欣赏了英国著名的地方赛马会实况转播。 ——美国发明了每秒种可以映出25幅图像的电子管电视装置。

1936年 英国广播公司采用贝尔德机电式电视广播,第一次播出了具有较高清晰度,步入实用阶段的电视图像。

1939年 美国无线电公司开始播送全电子式电视。瑞士菲普发明第一台黑白电视投影机 。

1940年 美国古尔马研制出机电式彩色电视系统。

1949年12月17日 开通使用第一条敷设在英国伦敦与苏登.可尔菲尔特之间的电视电缆。

1951年 美国H.洛发明三枪荫罩式彩色显像管,洛伦期发明单枪式彩色显像管。

1954年 美国得克萨期仪器公司研制出第一台全晶体管电视接收机。

1966年 美国无线电公司研制出集成电路电视机。3年后又生产出具有电子调诣装置的彩色电视接收机。

1972年 日本研制出彩色电视投影机。

1973年 数字技术用于电视广播,实验证明数字电视可用于卫星通信。 1976年 英国完成“电视文库”系统的研究,用户可以直接用电视机检查新闻,书报或杂志。

1977年 英国研制出第一批携带式电视机。

1979年 世上第一个“有线电视”在伦敦开通。它是英国邮政局发明的。它能将计算机里的信息通过普通电话线传送出去并显示在用户电视机屏幕上。 1981年 日本索尼公司研制出袖珍黑白电视机,液晶屏幕仅2.5英寸,由电池供电。

1984年 日本松下公司推出“宇宙电视”。该系统的画面宽3.6米,高4.62米,相当于210英寸,可放置在大型卡车上,在大街和广场等需要的地方播放。系统中采用了松下独家研制的“高辉度彩色发光管”,即使是白天,在室外也能得到色彩鲜艳,明亮的图像。

1985年3月17日 在日本举行的筑波科学万国博览会上,索尼公司建造的超大屏幕彩色电视墙亮相。它位于中央广场上,长40米、高25米,面积达1000

平方米,整个建筑有14层楼房那么高。相当一台1857英寸彩电。超大屏幕由36块大型发光屏组成,每块重1吨,厚1.8米 4行9作品共有45万个彩色发光元件。通过其顶部安装的摄像机,可以随时显示会场上的各种活动,并播放索尼公司的各种广告性录像。

1985年 英国电信公司(BT)推出综合数字通信网络。它向用户提供话音、快速传送图表 、传真、慢扫描电视终端等。

1991年11月25日 日本索尼公司的高清晰度电视开始试播:其扫描线为1125条,比目前的525条多出一倍,图像质量提高了100%;画面纵横比改传统的9:12为9:16,增强了观赏者的现场感;平机视角从10度扩展到30度,映图更有深度感;电视面像“画素”从28万个增加 为127万个单位面积画面的信息量一举提高了近4倍……因此,观看高清晰度电视的距离不是过去屏高的7倍而是3倍,且伴音逼真,采用4声道高保真立体声,富有感染力。

1995年 日本索尼公司推出超微型彩色电视接收机(即手掌式彩电),只有手掌一样大小 ,重量为280克。具有扬声器,也有耳机插孔,液晶显示屏约5.5厘米,画面看来虽小,但图像清晰,其最明显的特点是:以人的身体作天线来取得收视效果,看电视时将两根引线套在脖子上,就能取得室外天线般的效果。 1996年 日本索尼公司推向市场“壁挂”式电视:其长度60厘米、宽38厘米,而厚度只有3.7厘米,重量仅1.7千克,犹如一幅壁画。

1958年9月2日 我国开始播送黑白电视,并建立了相应的电视工业。 1973年 开始试播彩色电视。

19世纪末,少数先驱者开始研究设计传送图像的技术。1904年,英国人贝尔威尔和德国人柯隆发明了一次电传一张照片的电视技术,每传一张照片需要10分钟。1924年,英国和德国科学家几乎同时运用机械扫描方式成功地传出了静止图像。但有线机械电视传播的距离和范围非常有限,图像也相当粗糙。

1923年,俄裔美国科学家兹沃里金申请到光电显像管、电视发射器及电视接收器的专利,他首次采用全面性的“电子电视”发收系统,成为现代电视技术的先驱。电子技术在电视上的应用,使电视开始走出实验室,进入公众生活之中,1925年,英国科学家研制成功电视机。1928年,美国纽约31家广播电台进行了世界上第一次电视广播试验,由于显像管技术尚未完全过关,整个试验只持续了30分钟,收看的电视机也只有十多台,此举宣告了作为社会公共事业的电视艺术的问世,是电视发展史上划时代的事件。

1929年美国科学家伊夫斯在纽约和华盛顿之间播送50行的彩色电视图像,发明了彩色电视机。1933年兹沃里金又研制成功可供电视摄像用的摄像管和显像管。完成了使电视摄像与显像完全电子化的过程,至此,现代电视系统基本成型。今天电视摄影机和电视接收的成像原理与器具,就是根据他的发明改进而来。

(2)电视艺术在英国、美国的发展:教材强调了20世纪30~40年代,电视艺术在英国和美国有了长足的发展。建议教师结合教材,适当补充资料即可。 1936年11月2日,英国广播公司在伦敦郊外的亚历山大宫,播出了一场颇具规模的歌舞节目,并首次开办每天2小时的电视广播。全伦敦只有200多台收视电视机,但它标示着世界电视事业开始发迹。对当年柏林奥林匹克运动会的报道,更是年轻的电视事业的一次大亮相。当时共使用了4台摄像机拍摄比赛情况。其中最引人注目的是全电子摄像机。这台机器体积庞大,它的一个1.6米焦距的镜头就重45公斤,长2.2米,被人们戏称为电视大炮。此后,价格相当昂贵的电视在英国中上层家庭开始有所普及。1937年,该公司播映英王乔治五世的加

冕大典时,英国已有5万观众在观看电视。1939年,第二次世界大战爆发时,英国约有两万家庭拥有了电视机。

1939年4月30日,美国无线电公司通过帝国大厦屋顶的发射机,传送了罗斯福总统在世界博览会上致开幕词和纽约市市长带领群众游行的电视节目。成千上万的人拥入百货商店排队观看这个新鲜场面。二战结束时,美国约有7000台电视机。二战前开办电视的还有德国、法国、意大利等国。

(3)电视艺术的普及应用:建议教师从电视艺术普及的条件、时间及表现三方面把握教材。

联系第三次科技革命的成果、结合本节整体教材指出电视艺术普及的条件:电子技术等方面的进步,社会巨大变化和人类新的精神需求及商业利润的驱动。建议教师从电视机研制、电视转播、电视节目制作三方面稍作补充,如:电视机经历了从黑白到彩色,从电子管、晶体管电视迅速发展到集成电路电视,目前,电视正在向智能化、数字化和多用途化迈进;电视转播也由卫星传播到卫星直播。 表现:教材以美国和中国为例加以说明,首先第二次世界大战后美国电视事业发展超过英国:从1949年到1951年,电视机数目从1百万台跃升为1千多万台,1960年全美电视台高达780座,电视机近三千万台,约有87%的家庭拥有至少一台电视机。同时期英国只有190万台电视机,法国3万台,加拿大2万,日本4千台。1993年底,美国98%的家庭拥有至少一台电视机,其中99%为彩色电视机。

1958年,中国第一台黑白电视机在天津诞生,同年,开始试播。当时,全国只有50多台黑白电视机。1971年,全国已建有电视台32座。21世纪初,中国大陆的电视覆盖率高达94%。

液晶电视 液晶显示器,简称LCD(Liquid Crystal Display)。世界上第一台液晶显示设备出现在20世纪70年代初,被称之为TN-LCD(扭曲向列)液晶显示器。尽管是单色显示,它仍被推广到了电子表、计算器等领域。80年代,STN-LCD(超扭曲向列)液晶显示器出现,同时TFT-LCD(薄膜晶体管)液晶显示器技术被研发出来,但液晶技术仍未成熟,难以普及。80年代末90年代初,日本掌握了STN-LCD及TFT-LCD生产技术,LCD工业开始高速发展。

液晶电视的历史

20世纪人类最伟大的成就之一莫过于电视的发明。今天,科学技术的发展已经使21世纪的人类完全进入了一个崭新的时代——数字化时代。目前大部分国内外电视厂商都将液晶电视列为热点技术产品,也就是说未来几年,目前较受欢迎的高清晰度电视和背投电视将会有液晶的身影。 液晶的发现 1888年奥地利植物学家发现了一种白浊有粘性的液体,后来,德国物理学家发现了这种白浊物质具有多种弯曲性质,认为这种物质是流动性结晶的一种,由此而取名为Liquid Crystal即液晶

LCD发展过程

1、 1888年发现液晶材料;

1968年美国首先做出LCD产品;

1973年夏普做出TN-LCD;1984年发明了STN-LCD和TFT-LCD。 发展过程

-- 1888~1968年为液晶材料性能和应用研究时期。

--1973~1985年为TN-LCD获得广泛应用时期。

--1985~1993年为STN-LCD推广应用时期。

--1993~2000年是TFT-LCD大发展时期,这个时期TFT-LCD的性能已可以与CRT媲美。

--LCD发展大大扩展了显示器的应用范围,使个人使用移动型手持显示器成为可能,因此,2000年以后将进入LCD与CRT争夺显示器主流市场的时代。

LCD主要技术发展过程

--彩色低功耗反射型LCD技术。

--低温多晶硅(P-Si)LCD大生产技术。

--大尺寸、宽视角、高分辨彩色TFT-LCD的发展。1993年以前主要生产的是10.4英寸以下,640×480像素的产品;1993~1997年主要生产的是10英寸~13英寸,1024×768像素的产品;1997~1999年主要生产15英寸~18英寸,1024×768和以上像素的产品;1999年以后开始生产20英寸~30英寸的产品。

--1998年以后开始大力开发高分辨率、大屏幕液晶投影电视。

2008年 人们更重视液晶电视的美观和厚度,Sony品牌电视现在26寸以下的最薄可以做到22毫米了,世界最薄的哦!

中国液晶电视产业发展情况 进入新世纪,中国液晶电视产业呈加速发展态势,取得了令人可喜的成绩。

2005年中国液晶电视市场总体销量达到134万台,比2004年增长452.3%,其中,零售市场销量达到127万台,比2004年增长480.3%,销售额达到126亿元,比2004年增长492.0%.2006年,中国液晶电视销量达到380万台,同比增长200%,并占领了10.6%的彩电市场;销售额规模为365亿元,同比增长189%。从2006年初到年底,不同尺寸的液晶电视平均销售价格降幅都在30%以上,其中32英寸和42英寸降幅更是逼近40%。2007年全球液晶电视出货量达到7933万台,将近8000万台,较2006年大幅成长73%;出货金额则达到679亿美元,较2006年成长40%。市场需求带动了液晶电视产量的持续增长。高端平板电视中,液晶和等离子电视在国内彩电销售量中占到一半以上,在大城市的销量更是占到九成以上。

2008年,雪灾、地震、全球金融危机给液晶电视(LCD)市场带来不小的影响,2008年1-9月中国彩电零售量同比增长5.2%。其中,液晶电视零售量达878.2万台,比去年同期增长72.0%,占整体市场的比重从2007年的23.0%增至2008年的33.6%。但相比去年同期,增长幅度却有20%的下降。 液晶电视的显示原理 液晶是一种介于固态和液态之间的物质,是具有规则性分子排列的有机化合物,如果把它加热会呈现透明状的液体状态,把它冷却则会出现结晶颗粒的混浊固体状态。正是由于它的这种特性,所以被称之为液晶(Liquid Crystal)。用于液晶显示器的液晶分子结构排列类似细火柴棒,称为Nematic液晶,采用此类液晶制造的液晶显示器也就称为LCD(Liquid Crystal Display)。而液晶电视是在两张玻璃之间的液晶内,加入电压,通过分子排列变化及曲折变化 再现画面,屏幕通过电子群的冲撞,制造画面并通过外部光线的透视反射来形成画面

液晶显示器的分类

常见的液晶显示器分为四种:

1.TN-LCD(Twisted Nematic-LCD,扭曲向列LCD)

2.STN-LCD(Super TN-LCD,超扭曲向列LCD)

3.DSTN-LCD(Double layer STN-LCD,双层超扭曲向列LCD)

4.TFT-LCD(Thin Film Transistor-LCD,薄膜晶体管LCD)

从结构上看TN-LCD与STN-LCD似乎差别不大,但实质上它们的工作原理是完全不同的:

①在TN液晶盒中扭曲角为90°;在STN液晶盒中扭曲角为270°或附近值;

②在TN液晶盒中,起偏镜的偏光轴与上基片表面液晶分子长轴平行,检偏镜的偏光轴与下基片表面液晶分子长轴平行,即上下偏光轴互相成90°;在STN液晶盒中,上、下偏光轴与上、下基片分子长轴都不互相平行,而是成一个角度,一般为30°。

③TN液晶盒是利用液晶分子旋光特性工作的,而STN液晶盒由于经起偏镜的入射线偏振光与液晶分子成角度,使入射光被分解为正常束和异常束两种,通过液晶盒两束光产生光程差,在通过检偏镜时发生干涉。所以STN液晶盒是利用液晶的双折射特性工作的。

④TN液晶盒工作于黑白模式;STN液晶盒一般工作于光程差为0.8μm情况下,干涉色为黄色。当加上大于Vth电压时,白光可透过液晶层,但是在经过检偏镜时则明显减弱,液晶盒呈黑色外观,称为黑/黄模式。如果检偏镜光轴相对于出射光侧液晶分子长轴方向左旋30°,则为白/蓝模式。即不加电压时,液晶盒呈蓝色;加电压时,液晶盒呈无色外观。因此STN是有色模式。TN由于无法显示细腻的字符,通常应用在电子表、计算器上。作为显示器TN系列的液晶显示器已基本被淘汰,STN由于扭转角度较大,字符显示比TN细腻,同时也支持基本的彩色显示,多用于液晶电视、摄像机的液晶显示器、掌上游戏机等。而随后的DSTN和TFT则被广泛制作成液晶显示设备,DSTN液晶显示屏多用于早期的笔记本电脑,由于支持的彩色数有限,所以也称为伪彩显。TFT则既应用在笔记本电脑上,又逐步进入主流台式显示器市场。

TFT液晶显示器的原理

TFT液晶显示器与TN系列液晶显示器的原理大不相同,但在构造上和TN液晶仍有相似之处,如玻璃基板、ITO膜、配向膜、偏光板等,它也同样采用两夹层间填充液晶分子的设计,只不过把TN上部夹层的电极改为FET晶体管,而下层改为共同电极。

在光源设计上,TFT的显示采用“背透式”照射方式,即假想的光源路径不是像TN液晶那样的从上至下,而是从下向上,这样的作法是在液晶的背部设置类似日光灯的光管。光源照射时先通过下偏光板向上透出,它也借助液晶分子来传导光线,由于上下夹层的电极改成FET电极和共通电极。在FET电极导通时,液晶分子的表现如TN液晶的排列状态一样会发生改变,也通过遮光和透光来达到显示的目的。

但不同的是,由于FET晶体管具有电容效应,能够保持电位状态,先前透光的液晶分子会一直保持这种状态,直到FET电极下一次再加电改变其排列方式。相对而言,TN就没有这个特性,液晶分子一旦没有施压,立刻就返回原始状态,这是TFT液晶和TN液晶显示的最大不同之处。 液晶电视的优势

轻薄便携 传统显示器由于使用CRT,必须通过电子枪发射电子束到屏幕,因而显像管的管颈不能做得很短,当屏幕增加时也必然增大整个显示

器的体积。液晶显示器通过显示屏上的电极控制液晶分子状态来达到显示目的,即使屏幕加大,它的体积也不会成正比的增加(只增加尺寸不增加厚度所以不少产品提供了壁挂功能,可以让使用者更节省空间),而且在重量上比相同显示面积的传统显示器要轻得多,液晶电视的重量大约是传统电视的1/3。

分辨率大、清晰度高 液晶显示器一开始就使用纯平面的玻璃板,其平面直角的显示效果比传统显示器看起来好得多。不过在分辨率上,液晶显示器理论上可提供更高的分辨率,但实际显示效果却差得多(存在一个最佳分辨率的问题),虽然液晶电视可以克服扫描线的抖动和闪烁,但由于液晶本身的缝隙较粗,会造成图像如网格般的收看效果。所以液晶屏幕的最佳分辨率一般可达1024X768(已经足够了)。而传统显示器在较好显示卡的支持下达到完美的显示效果。

绿色环保 液晶显示器根本没有辐射可言,而且只有来自驱动电路的少量电磁波,只要将外壳严格密封即可排除电磁波外泄。所以液晶显示器有称为冷显示器或环保显示器。液晶电视不存在屏幕闪烁现象,不易造成视觉疲劳。

耗电量低 按照行业标准、使用时间为每天4.5小时的年耗电量换算,用30英寸液晶电视替代32英寸显像管电视,每年每台可节约电能71千瓦。 LCD的缺点 1、在显示反应速度上,传统显示器由于技术上的优势,反应速度非常好。TFT液晶显示器由于显示特性,就不怎么乐观了(低温无法正常工作,且存在反应时间)。LCD的响应时间比较长,因此在动态图像方面的表现不理想。

2、显示品质:传统显示器的显示屏幕采用荧光粉,通过电子束打击荧光粉而显示,因而显示的明亮度比液晶的透光式显示(以日光灯为光源)更为明亮。LCD理论上只能显时18位色(约262144色),但CRT的色深几乎是无穷大。

3、LCD的可视角度相对CRT显示器来说是比较小的。

4、LCD显示屏比较脆弱,容易受到损伤。 这就提高了液晶电视的使用和维护难度。

5、由于液晶是一种介于固体与液体之间,具有规则性分子排列的有机化合物。在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像。液晶电视就是利用这种原理制成的。但是正是由于这个原理,所有液晶电视在工艺上很难做大,而且价格昂贵。

6、目前的制造工艺决定了LCD存在点缺陷问题,其制造的良品率相对较低,这也在一定程度上增加了LCD的制造成本。所以价格是困扰LCD推广的最大障碍,有时一个好的17"LCD要价会超过20000元,这对于CRT来说了可是一个极品21"平面的显示器的价格。

大部分国内外电视厂商认为:未来几年,较受欢迎的高清晰度电视和背投电视将逐渐被液晶电视取代。在技术含量上,液晶电视基本都采用逐行扫描,4H数码梳状滤波器,DVD分量端子,色彩现象1670万种以上。目前国内乃至国际上都还没有一套完整的针对LCD产品的规范,这也就造成了目前市场上的LCD产品存在标准不统一的问题,使用户在选择LCD产品时容易产生疑惑,甚至受到误导。

液晶显示器,英文通称为LCD(Liquid Crystal Display)。LCD液晶电视主要采用TFT型的液晶显示面板,其主要的构成包括了,萤光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄模式晶体管等等。首先液晶显示器必须先利用背光源,也就是萤光灯管投射出光源,这些光源会先经过一个偏光板然后再经过液晶,这时液晶分子的排列方式进而改变穿透液晶的光线角度。然后这些光线接下来还必须经过前方的彩色的滤光膜与另一块偏光板。因此只要改变刺激液晶的电压值就可以控制最后出现的光线强度与色彩,并进而能在液晶面板上变化出有不同深浅的颜色组合了。

等离子和液晶都是下一代电视机的主流技术,代表了两种不同的发展方向。两种平板电视都各有优缺点,等离子彩电具有图像无闪烁、厚度薄、重量轻、色彩鲜艳、图像逼真等特点,而且在屏幕大型化方面相对容易,其缺点是耗电大、寿命有限、容易老化。

液晶电视机也具有图像无闪烁、厚度薄、重量轻等特点,且液晶屏已被广泛应用于PC领域,但在大屏幕化方面液晶技术落后于等离子,大屏幕彩电成本较高,观看易受视角影响。

尺寸/价格比 液晶和等离子电视都不便宜,相对来说,等离子电视在每平方英寸上的单价要比液晶电视有优势。液晶电视的尺寸较小,一般在30英寸左右,价格在4000到8000之间,目前南京市场上最大的尺寸是45英寸的,但是近3万的售价令人敬而远之;等离子尺寸较大,最小的也要42英寸,国产品牌的价格在1.5万至2万元。如果希望50英寸液晶价格与等离子价格大致相当,则还需要耐心等上一阵子。

要在卧室放一台20英寸的夏普Aquos。20英寸的电视还是相当小,要坐得很近才能看清屏幕上的东西。放在餐厅或者卫生间就比较合适,可以在就餐或泡澡的时候看看电视。同样,17英寸的型号只适用于厨房或家庭办公室。

性能 在家庭影院效果方面,等离子电视效果强于液晶电视。因为液晶电视通常无法显示等离子电视那种黑度。所以,液晶电视难以显示更多的细节,视频玩家也会感觉图像的“立体”感不太好。

虽然总体来说液晶和等离子电视的图像质量年年都有改善,但各个厂家的产品性能则相差甚远,因此在购买前要到家电卖场各个品牌产品专柜去多方比较。

寿命/耗电 在使用寿命这一点上液晶电视比等离子电视优势明显。虽然等离子电视的寿命各有差异,但降低到一半亮度大约要花2万小时,而液晶可以在5万小时后才降低到半亮度。液晶功耗只有等离子电视的1/3,有些等离子产品的功耗则高达400瓦/小时以上。

烧屏和海拔问题 “烧屏”是等离子电视的问题,如果屏幕上长时间保持一幅静止图像,则屏幕上会留下该图像的“鬼影”。如果电视台台标或新闻滚动条长时间显示在电视上方和下方,或者经常在宽屏幕上看标准幅面的电视节目,屏幕的上下或两侧会出现影像侧边的影子。所以最好在使用中注意,比如不要长时间在屏幕上播放静止图像,以及将对比度设定到50%以下等。

另外,等离子电视在高海拔地区可能会出现问题,因为海拔不同的气压差会使等离子电视发出一种难听的嗡嗡声,当然,在南京不会出现高海拔问题。而液晶电视则不会出现上述两个问题。

高清晰度 大多数等离子电视和液晶电视都能显示高清晰度信号。但需注意的是:要欣赏到真正完整的HDTV,显示分辨率至少要达到

1280×720。只有很少的42英寸等离子可以达到这种分辨率,大多数50英寸等离子电视和几乎所有大于26英寸的液晶电视都没有问题。当然,一台小于42英寸的电视与真正的高清晰电视相比,除非你坐在屏幕前面仔细看,一般不会注意到两者有什么太大的区别。例如,虽然松下的TH-42PA20U型号的42英寸等离子电视只提供到增强清晰度的分辨率(EDTV,852×480),但用它接收HDTV的效果仍然很好。

计算机与视频游戏:大多数等离子电视和液晶电视都可以用作电脑显示器,很多电视甚至还提供DVI接口,可以获得更好的显示性能。两种电视接游戏机都毫无问题。单从性能上来看,很难对两种技术作一个裁决,但考虑到等离子电视有烧屏的可能性,因此液晶电视是一种比较安全的选择

液晶监视器与液晶电视的区别

监视器在功能上比电视机简单但在性能上,却要求比电视机要求高,反映以下三点:

一是图像清晰度: 由于传统的电视机接收的是电视台发射出来的射频信号,这一信号对应的视频图像带宽通常小于 6M ,因而电视机的清晰度通常大于 400 线,要求监视器具有较高的图像清晰度,故专业监视器在通道电路上比起传统电视机而言应具备带宽补偿和提升电路,使之通频带更宽,图像清晰度更高。

二是色彩还原度 如果说清晰度主要是由视频通道的幅频特性决定的话,还原度则主要由监视器中有红( R )、绿( G )、蓝( B )三基色的色度信号和亮度信号的相位所决定。由于监视器所观察的通常为静态图像,因而对监视器色彩还原度的要求比电视机更高,故专业监视器的视放通道在亮度、色度处理和 R 、 G 、 B 处理上应具备精确的补偿电路和延迟电路,以确保亮 / 色信号和 R 、 G 、 B 信号的相位同步。

三是整机稳定度: 监视器在构成闭路监控系统时,通常需要每天 24 小时,每年 365 天连续无间断的通电使用(而电视机通常每天仅工作几小时),并且某些监视器的应用环境可能较为恶劣,这就要求监视器的可靠性和稳定性更高。与电视机相比而言,在设计上,监视器的电流、功耗、温度及抗电干扰、电冲击的能力和裕度以及平均无故障使用时间均要远大于电视机,同时监视器还必须使用全屏蔽金属外壳确保电磁兼容和干扰性能;在元器件的选型上,监视器使用的元器件的耐压、电流、温度、湿度等各方面特性都要高于电视机使用的元器件;而在安装、调试尤其是元器件和整机老化的工艺要求上,监视器的要求也更高,电视机制造时整机老化通常是在流水线上常温通电 8 小时左右,而监视器的整机老化则需要在高温、高湿密闭环境的老化流水线上通电老化 24 小时以上,以确保整机的稳定性。

购买液晶电视应注意的问题

1.注意是否带有HDMI接口 HDMI接口是现在唯一的一种可以同时传输音频和视频信号的数字接口,它不但可以简化连接,减少你的连线负担,而且可以提供庞大的数字信号传输所需带宽,强调这一接口的重要性主要在于现在新的和未来的碟机、电脑、家庭影院等设备,都会积极采用这一接口,而应用这一接口来与这些设备连接,无疑可以获得最好的效果。所以在购买前先确认你是否需要HDMI接口,可以减少你购买以后的后悔几率。

2.注意实际分辨率 液晶电视的实际分辨率是指液晶电视本身可以达到的分辨率,一般应该选择1280*768以上的分辨率,达到这种分辨率以上的产品在收看高清电视和做电脑的多媒体终端时效果会好很多,需要注意的是有些厂商把可以兼容的信号输入来蒙蔽消费者,一定要分清实际分辨率和兼容信号输入之间的区别。还有就是由于液晶工作原理所决定的,液晶电视的分辨率是固定的,它的最佳分辨率就是它的实际分辨率,而我们与电脑连接时,最好选择与液晶电视分辨率最接近的分辨率设置。目前液晶电视主要有800×600、1280×768与1366×768等几种常见分辨率。

3.亮度、对比度、可视角度 厂商在亮度和对比度上往往夸大其词,一般来说亮度在500流明,对比度在600:1以上的产品就不错了。其实消费者可以直接忽略厂商提供的亮度和对比度参数(太假了),直接以自己的目测感受为主,方法为在5米以外的距离,查看屏幕显示亮度和对比度,注意一些黑暗场景中的细节表现,多做几款产品对比,这样下来以后,就知道你将购买的液晶电视在亮度与对比度方面是否能够令你满意了。现在的液晶面板可视角度一般都在170以上,需要注意的问题是,在侧面观看时,注意屏幕左右和中央的画面是否清晰,亮度是否差异较大,选择差异尽量小的产品。

液晶电视技术指标

液晶电视屏幕种类 液晶屏由于技术和工艺的不同而分成PC屏和专用AV屏,普通PC屏成本要比同尺寸专用AV屏便宜千元以上,性能也逊色很多,一般只用于PC或笔记本的液晶显示屏。出于成本或者采购困难等原因,有个别厂商以次充好,这需要消费者格外警惕,对一些特别便宜的液晶电视要尤其小心。

液晶电视屏幕格式 屏幕宽度与高度的比例称为屏幕比例。目前液晶电视的屏幕比例一般有4∶3和16∶9两种。

16∶9是最适合人眼视角的格式,有更强的视觉冲击力。同时,未来数字电视的显示格式也将采用16∶9的格式。4∶3是适合目前模拟电视信号的显示格式,因此如果主要用来看电视还是有一定优势的。需要指出的是,目前很多16∶9和4∶3格式的电视都可以通过菜单调整画面的显示格式,但这都是以浪费一定面积的屏幕为代价的。如果是主要用来观看电视的,建议选择4∶3的产品,否则经过拉伸处理的画面会使你难以忍受;而主要用来观赏DVD大片的,建议选购16∶9的产品,因为16∶9会带来4∶3永远都达不到的视觉享受。

液晶电视主要性能指标 液晶彩电的性能指标中,对消费者视觉感受影响最大的是亮度、对比度、分辨率和可视角度。亮度是指画面的明亮程度,单位是cd/m2或称nITs。目前提高亮度的方法有两种:一是提高LCD面板的光通过率;另一种就是增加背灯源的亮度。

现在主流的亮度是250cd/m2以上,不过高亮产品正在逐渐成为流行。一般来说达到400cd/m2以上才算是高亮产品,高亮度能够使显示的画面更加清晰鲜艳,特别适合播放DVD电影。

而关于对比度问题,主流产品均在400∶1到500∶1间,差别较小,不过也有某些高端产品达到800∶1以上,在采购时不必过于在意。过高的对比度,比如在400以上的话就没有多少实际意义了,人眼已经无法分辨。 分辨率则会影响画面清晰程度,分辨率高的液晶彩电画面清晰细腻,画面边缘明快锐利,分辨率过低则会使画面粗糙,近观有明显颗粒感。一般在1024×768或以上的分辨率就具备了高清晰电视的特点。

对家用来说,液晶彩电可视角度自然是大些好,可视角度越大,用户能看到清晰完美画面的空间范围越大。

液晶电视点距 点距一般是指相邻两个像素点之间的距离。点距的计算方式是以面板尺寸除以分辨率所得的,但LCD TV点距的重要性却远没有CRT那么高。

液晶电视反应时间 所谓反应时间是液晶电视各像素点对输入信号反应的速度,即像素由暗转亮或由亮转暗所需要的时间?其原理是在液晶分子内施加电压,使液晶分子扭转与回复?。常说的25ms、16ms就是指的这个反应时间,反应时间越短则使用者在看动态画面时越不会有尾影拖曳的感觉。 据数据表明:

反应时间30毫秒=1/0.030=每秒钟电视能够显示33帧画面,这已经能满足DVD播放的需要;

反应时间25毫秒=1/0.025=每秒钟电视能够显示40帧画面,完全满足DVD播放以及绝大部分电影或者游戏的需要。

液晶电视背光寿命 液晶面板本身不能发光,它属于背光型显示器件。在液晶屏的背后有背光灯,液晶电视是靠面板上的液晶单元“阻断”和“打开”背光灯发出的光线,来实现还原画面的。

可以发现,只要液晶显示器接通电源,背光灯就开始工作,即使显示的画面是一幅全黑的图片,背光灯也同样会保持在工作状态。

由于液晶面板的透光率极低,要使液晶电视的亮度达到还原画面的水平。背光灯的亮度至少达到6000cd/m2。背光灯的寿命就是液晶电视的寿命,一般液晶电视的背光寿命基本在5万小时以上。也就是说,如果你平均每天使用液晶电视5小时,那5万小时的寿命等于你可以使用该液晶电视27年。

液晶电视接收制式 目前世界上彩色电视主要有三种制式,即NTSC、PAL和SECAM制式,三种制式目前尚无法统一。我国采用的是PAL-D制式,因此在我国使用的液晶电视至少要兼容PAL-D制式。一般液晶电视都兼容以上的电视制式,但购买前最好再确认一下。

液晶电视声音输出功率 液晶电视为了能正常的发声,所以都至少带有两个内置的音箱,它的功率决定的是音箱所能发出的最大声强。

由于液晶电视的主要作用并不是欣赏音乐,因此声音的功率并不是十分重要,相比之下,声音的质量也许更重要一些。目前一般液晶电视音箱功率为2到10W。

当然,如果您需要将液晶电视接驳家庭影院,那么就一定不会绕过功放这个单元,因此LCD TV的声音输出功率也就可以忽略不计了。

液晶电视接口 考虑液晶电视要与家庭影院以及电脑等外设相连,所以,除必备的AV、S-Video等接口外,DVI与D-Sub接口、光纤输出等等也应在考察范围之内。

液晶电视选购指南 正品液晶电视选购一般要通过正规商家购买,国美、苏宁、大中等商场,以及京东、库巴购物网、苏宁易购等网上门户级商店,保证正品行货质量,售后等问题都可以得到保障,现在更有送货上门服务,购物更便捷。

商业宣传的误区 目前的家电卖场通常回询问顾客是要LED还是LCD。其实这是宣传上的误区。LCD是液晶电视的总称,LED是液晶电视背光技术的一种,隶属于LCD,而非与其同级。与LED对等的是CCFL。商家为便于宣传,将CCFL称作LCD。

CCFL与LED是指液晶电视背光技术的两个发展阶段,也是目前市场主要的两种液晶电视背光技术。但无论哪种背光技术,液晶本身的原理都相同。液晶本身不发光,需要用背光照亮。这种照亮技术就分为CCFL与LED。LED的技术相比CCFL更先进,整体视觉效果更好,更节能,当然也更烧钱。 数字电视 数字电视就是指从演播室到发射、传输、接收的所有环节都是使用数字电视信号或对该系统所有的信号传播都是通过由0、1数字串所构成的数字流来传播的电视类型。其信号损失小,接收效果好。

Digital TV

数字电视是一个从节目采集、节目制作节目传输直到用户端都以数字方式处理信号的端到端的系统。基于DVB技术标准的广播式和“交互式”数字电视.采用先进用户管理技术能将节目内容的质量和数量做得尽善尽美并为用户带来更多的节目选择和更好的节目质量效果,与模拟电视相比,数字电视具有图像质量高、节目容量大(是模拟电视传输通道节目容量的l0倍以上)和伴音效果好的特点。

数字信号 在通信系统内传输的信号,其载荷信息的物理量在时间上是离散,而且取值也离散,则称为数字信号。

传播速率 数字信号的传播速率是每秒19.39兆字节,如此大的数据流的传递保证了数字电视的高清晰度,克服了模拟电视的先天不足。同时还由于数字电视可以允许几种制式信号的同时存在,每个数字频道下又可分为几个子频道,从而既可以用一个大数据流--每秒19.39兆字节,也可将其分为几个分流,例如4个,每个的速度就是每秒4.85兆字节,这样虽然图像的清晰度要大打折扣,却可大大增加信息的种类,满足不同的需求。例如在转播一场体育比赛时,观众需要高清晰度的图像,电视台就应采用每秒19.39兆字节的传播;而在进行新闻广播时,观众注意的是新闻内容

了保证最终输出有足够的信杂比,就必须对各种处理设备提出较高信杂比的要求。模拟信号要求 S/N>40dB,而数字信号只要求S/N>20dB。模拟信号在传输过程中噪声逐步积累,而数字信号在传输过程中,基本上不产生新的噪声,也即信杂比基本不变。

(2)可避免系统的非线性失真的影响。而在模拟系统中,非线性失真会造成图像的明显损伤。

(3)数字设备输出信号稳定可靠。因数字信号只有“0”、“l”两个电平,“l”电平的幅度大小只要满足处理电路中可能识别出是“l”电平就可,大一点、小一点无关紧要。

(4)易于实现信号的存储,而且存储时间与信号的特性无关。近年来,大规模集成电路(半导体存储器)的发展,可以存储多帧的电视信号,从而完成用模拟技术不可能达到的处理功能。例如,帧存储器可用来实现帧同步和制式转换等处理,获得各种新的电视图像特技效果。

(5)由于采用数字技术,与计算机配合可以实现设备的自动控制和调整。

(6)数字技术可实现时分多路,充分利用信道容量,利用数字电视信号中行、场消隐时间,可实现文字多工广播(Teletext)。

(7)压缩后的数字电视信号经数字调制后,可进行开路广播,在设计的服务区内(地面广播),观众将以极大的概率实现“无差错接收”(发“0”收“0”,发“ l”收“l”),收看到的电视图像及声音质量非常接近演播室质量。

(8)可以合理地利用各种类型的频谱资源。以地面广播而言,数字电视可以启用模拟电视?quot;禁用频道(taboo channel),而且在今后能够采用“单频率网络”(single frequency network)技术,例如 l套电视节目仅占用同 1个数字电视频道而覆盖全国。此外,现有的 6MHz模拟电视频道,可用于传输 l套数字高清晰度电视节目或者 4-6套质量较高的数字常规电视节目,或者 16-24套与家用 VHS录像机质量相当的数字电视节目。

(9)在同步转移模式(STM)的通信网络中,可实现多种业务的“动态组合”(dynamic combination)。例如,在数字高清晰度电视节目中,经常会出现图像细节较少的时刻。这时由于压缩后的图像数据量较少,便可插入其它业务(如电视节目指南、传真、电子游戏软件等),而不必插入大量没有意义的“填充比特”。

(10)很容易实现加密/解密和加扰/解扰技术,便于专业应用(包括军用)以及广播应用(特别是开展各类收费业务)。

(ll)具有可扩展性、可分级性和互操作性,便于在各类通信信道特别是异步转移模式(ATM)的网络中传输,也便于与计算机网络联通。

(12)可以与计算机"融合"而构成一类多媒体计算机系统,成为未来"国家信息基础设施"(NII)的重要组成部分。

技术手段 数字电视广播流程及实现手段 数字电视广播,其信号流程包括制作(编辑)、信号处理、广播(传输)和接收(显示)几个过程。 目前用于数字节目制作的手段主要有:数字摄像机和数字照相机、计算机、数字编辑机、数字字幕机;用于数字信号处理的手段有:数字信号处理技术(DSP)、压缩、解压、缩放等技术;用于传输的手段有:地面广播传输、有线电视(或光缆)传输、卫星广播(DSS)及宽带综合业务网(ISDN)、

DVD等;用于接受显示的手段有:阴极射线管显示器(CRT)、液晶显示器、等离子体显示器、投影显示(包括前投、背投)等。

视频编码技术主要功能是完成图像的压缩,使数字电视的信号传输量由995Mbit/s减少为20~30Mbit/s。视频编码计算时主要有以下客观依据:

机顶盒

(1)图像时间的相关性。视频信号由连续图像组成,相邻图像有很多相关性,找出这些相关性就可减少信息量。

(2)图像空间的相关性。例如图像中有一大块单一颜色,那么不必把所有像素存贮。

(3)人眼的视觉特性。人眼对原始图像各处失真敏感度不同,对不敏感的无关紧要的信息给予较大的失真处理,即使这些信息全部丢失了,人眼也可能觉察不到;相反,对人眼比较敏感的信息,则尽可能减少其失真。

(4)事件间的统计特性。事件发生的概率越小,则其熵值越大,表示信息量越大,需分配较长的码字;反之,发生的概率越大,则其熵值越小,只需分配较短的码字。

与视频编解码相同,音频编解码主要功能是完成声音信息的压缩。声音信号数字化后,信息量比模拟传输状态大得多,因而数字电视的声音不能象模拟电视的声音那样直接传输,而是要多一道压缩编码工序。 音频信号的压缩编码

(1)听觉的掩蔽效应。在人的听觉上,一个声音的存在掩蔽了另一个声音的存在,掩蔽效应是一个较为复杂的心理和生理现象,包括人耳的频域掩蔽效应和时域掩蔽效应。

(2)人耳对声音的方向特性。对于2KHZ以上的高频声音信号,人耳很难判断其方向性,因而立体声广播的高频部分不必重复存贮。

国际上对数字图像编码曾制订了三种标准,主要用于电视会议的

H.261,主要用于静止图像的JPMG标准,主要用于连续图像的MPEG标准。 在HDTV视频压缩编解码标准方面,美国、欧洲、日本设有分歧,都采用了MPEG-2标准。MPEG(Moving Picture Expert Group)意思是“运动图像专家组”,压缩后的信息可以供计算机处理,也可以在现有和将来的电视广播频道中进行分配。

在音频编码方面,欧洲、日本采用了MPEG-2标准;美国采纳了杜比公司(Dolby)的AC-3方案,MPEG-2为备用方案。

对于中国来说,今后信源编解码标准也会与美国、欧洲、日本一样采用MPEG-2标准。

(3)数字电视的复用系统

数字电视的复用系统是HDTV的关键部分之一。从发送端信息的流向来看,它将视频、音频、辅助数据等编码器送来的数据比特流,经处理复合成单路串行的比特流,送给信道编码及调制。接受端与此过程正好相反。

模拟电视系统不存在复用器。在数字电视中,复用器把音频、视频、辅助数据的码流通过一个打包器打包(这是通俗的说法,其实是数据分组),然后再复合成单路。目前网络通信的数据都是按一定格式打包传输的。HDTV数据的打包将使其具备了可扩展性、分级性、交互性的基础。

付费电视是现在和将来电视发展的一个方向。复用器可对打包的节目信息进行加扰,使其随机化,接收机具有密钥才能解扰。

在HDTV复用传输标准方面,美国、欧洲、日本也没有分歧,都采用了MPEG-2标准。美国已有了MPEG-2解复用的专用芯片。我国恐怕也会采用MPEG-2作为复用传输的标准。

HDTV数据包长度是188个字节,正好是ATM信元的整数倍。今后以光纤为传输介质,以ATM为信息传输模式的宽带综合业务数字网极有可能成为未来"信息高速公路"的主体设施。可用4个ATM信元来完整地传送一个HDTV传送包,因而可达到HDTV与ATM的方便接口。

(4)数字电视的信道编解码及调制解调

数字电视信道编解码及调制解调的目的是通过纠错编码、网格编码、均衡等技术提高信号的抗干扰能力,通过调制把传输信号放在载波或脉冲串上,为发射做好准备。我们目前所说的各国数字电视的制式,标准不能统一,主要是指各国在该方面的不同,具体包括纠错、均衡等技术的不同,带宽的不同,尤其是调制方式的不同。

数字传输的常用调制方式

正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。

键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。

残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。

编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。

美国地面电视广播迄今仍占其电视业务的一半以上,因此,美国在发展高清晰度电视时首先考虑的是如何通过地面广播网进行传播,并提出了以数字高清晰度电视为基础的标准-ATSC。美国HDTV地面广播频道的带宽为6MHZ,调制采用8VSB。预计美国的卫星广播电视会采用QPSK调制,电缆电视会采用QAM或VSB调制。

从1995年起,欧洲陆续发布了数字电视地面广播(DVB-T)、数字电视卫星广播(DVB-S)、数字电视有线广播(DVB-C)的标准。欧洲数字电视首先考虑的是卫星信道,采用QPSK调制。欧洲地面广播数字电视采用COFDM调制,8M带宽。欧洲电缆数字电视采用QAM调制。

日本数字电视首先考虑的是卫星信道,采用QPSK调制。并在1999年发布了数字电视的标准--ISDB

实际用途 在数字电视中,采用了双向信息传输技术,增加了交互能力,赋予了电视许多全新的功能,使人们可以按照自己的需求获取各种网络服务,包括视频点播、网上购物、远程教学、远程医疗等新业务,使电视机成为名副其实的信息家电。

数字电视提供的最重要的服务就是视频点播(VOD)。VOD是一种全新的电视收视方式,它不像传统电视那样,用户只能被动地收看电视台播放的节目,它提供了更大的自由度,更多的选择权,更强的交互能力,传用户之所需,看用户之所点,有效地提高了节目的参与性,互动性,针对性。因此,可以预见,未来电视的发展方向就是朝着点播模式的方向发展。数字电视还提供了其它服务,包括数据传送、图文广播、上网服务等。用户能够使用电视现实股票交易、信息查询、网上冲浪等,使电视被赋予了新的用途,扩展了电视的功能,把电视从封闭的窗户变成了交流的窗口。 国内的数字电视的标准制式 1、DVB-C标准的,已经统一标准了,但是加密方式不一样的,所以不能通用。

收费事项 数字电视不等于收费电视 事实上,数字电视不等于收费电视。数字电视的概念是指节目从摄制、编辑、播出、发射到接收的整个过程都是采用数字化技术实现的。包括数字摄像、数字制作、数字编码、数字调制和数字接收等,达到高质量传送电视信号的目的。不仅如此,数字电视还具有丰富的信息业务广播功能,具有可交互性等。从数字电视发展年表来看,到2015年国内终止模拟数字信号的播放,其间显然不仅是发展收费电视用户,公共频道(传统电视)的数字化也是必然趋势。而目前多数商家认为数字电视等同于收费电视,这与现实发展有所背离。

数字电视可与收费电视同行 事实上,数字电视不仅可与收费电视同行,而且,数字电视和收费电视同轨运行是国内外数字电视未来发展的一个趋势。采用这种发展模式的电视台既可以占领收费电视市场,同时顺应技术潮流,逐步达到数字播放的需要。在这一过程中,整合各类资源形成新的网台关系极其重要。

电视台希望通过收费频道的建设拥有数字电视平台,而公开频道则尽力延缓数字化,这有利于电视台利用数字电视达到收益的目的。而一旦到达政府规定的时限,公开频道可以平稳的转嫁至数字平台。

收费电视“内容为王” 实际上,收费电视时代更强调的是“内容为王”。“付费电视成败关键在于内容而非技术。”在谈到付费电视这种商业模式的赢利前景时,中央电视台副台长李晓明如是断言。数字化是不可避免的潮流,而且随着技术的成熟和进步,互联网的图像和声音传送水平将与电视一争高下,如此一来,电视将失去视、音频同步传播的优势。因此真正能够吸引受众的注定是内容,而且将是与以往大不相同的内容。有业内人士认为,老百姓不会仅仅为了收看到更清晰的节目就去付费,也不会仅仅因为你所播出的电视节目有一些简单的交互形式就去付费。“在一般的地区都能收到十几个频道的情况下,有多少人愿意一边看电视,一边往机顶盒上送钱呢?”有专家提出这样的疑问。观众在乎的根源说到底还是他们能看到什么样的内容,否则他们不会付费。因此,可以预测,推广收费电视的最大瓶颈在于如何推广和赢利与否直接相关的收费模式,而收费模式又取决于播出的内容。

现有数字付费电视传媒

中数传媒 中央数字电视传媒有限公司是由中央电视台投资组建、经国家广播电影电视总局授权的中国付费电视集成运营中心。是我国第一家覆盖全国范围、从事数字付费频道集成及代理营销业务的运营机构。 鼎视传媒

鼎视数字电视传媒有限公司是经国家广电总局批准的全国性数字付费电视集成运营商。由北京北广传媒数字电视有限公司、中央人民广播电台、天津时代天创传媒发展有限公司、山东省广播电视总台、安徽电视台五家股东共同组建成立。

文广互动

上海文广互动电视有限公司(SiTV)成立于2001年12月31日,是上海广播电视台(原上海文广新闻传媒集团更名为上海广播电视台)旗下从事数字电视和视频点播业务的经营实体,是中国目前规模最大的有线数字付费频道集成运营平台、数字电视频道运营商及多媒体内容体提供商和服务商。2003年8月,上海文广互动电视有限公司通过了ISO9001质量管理体系认证.

华诚数字 华诚公司定位为数字付费电视频道营销代理商和节目集成商,致力于数字付费电视节目在全国范围内的推广和运营。受电影频道节目中心委托,华诚公司独家全权代理CHC系列数字付费电影频道(《CHC家庭影院》、《CHC动作电影》、《CHC高清电影》频道),并代理其他数字付费电视频道的集成、传输和营销。此外,公司业务还涉及视频点播(VOD)、网站点播、中国移动多媒体广播业务(CMMB)及进出口代理等,今后业务还将涉及准视频点播(NVOD)、网络电视、IP电视和移动通信视频(3G手机)等数字电视延伸领域及相关增值服务。

发展前景 世界通信与信息技术的迅猛发展将引发整个电视广播产业链的变革,数字电视是这一变革中的关键环节。伴随着电视广播的全面数字化,传统的电视媒体将在技术、功能上逐步与信息、通信领域的其它手段相互融合,从而形成全新的、庞大的数字电视产业。这一新兴产业已经引起广泛的关注,各发达国家根据自己的国情,已分别制定出由模拟电视向数字电视过渡的方案和产业目标。数字电视被各国视为新世纪的战略技术。数字电视成了继电信引爆IT之后的又一大“热点”。

电视数字化是电视发展史上又一次重大的技术革命。数字电视不但是一个由标准、设备和节目源生产等多个部分相互支持和匹配的技术系统,而且将对相关行业产生影响并促进其发展。

发展方向 随着美国、欧洲、日本、韩国和中国陆续开播数字电视和强制规定模拟电视终结时间表,数字电视市场正在快速崛起,为了抓住这一千载难逢的发展机遇,中国主要的数字电视开发商和制造商都在全力设计个性化的高性能数字电视产品,他们的主要努力方向大概可归结为以下几类:支持多种数字电视标准、大屏幕、高清化、互联网DTV、DTV+PVR、支持更丰富的互联接口,本文将努力从上述几方面为大家描绘出数字电视的未来发展蓝图。

多标准数字电视 由于目前欧洲、北美、韩国和中国等大多数主要地区仍处于模拟电视与数字电视的转换过渡时期,因此市场上仍然有不少希望既能接收模拟电视节目又能接收数字电视节目的多功能电视机,当然啦,数字电视开发商和制造商也不一定非要把这两项功能都做在一部电视机中,也就是所谓的数字电视一体机,他们也可以采用机顶盒+模拟电视的解决方案来实现。具体的解决方案可参阅本数字电视设计专栏的其它部分。 此外,美国市场要求从2007年3月1日起,所有新上市的模拟电视机和电视接收设备均必须安装数字调谐器,这意味着数字电视一体机将在美

国市场占据统治性地位,而中国的数字电视的增量市场也对一体机有着巨大的需求。因此,未来数字电视一体机会占据越来越大的市场份额。 大屏幕数字电视 随着现代人起居室的不断变大,用户市场对大屏幕数字电视的需求也在不断增长。目前,总体上讲,LCD数字电视是业界的发展主流。但由于性价比的关系,一旦尺寸大到某一限度,LCD屏幕的成本就会急剧上升。传统上,业界认为40英寸是液晶和等离子电视的分界点,液晶电视更专注于40英寸以下领域,而等离子电视则适合40英寸以上的显示需求。但随着技术的进步,近期50英寸有望成为液晶和等离子电视新的分界点。

高清化 随着高清节目源的增多,图像水平清晰度大于800线的高清数字电视(HDTV)越来越成为数字电视的主流,相应的数字电视机顶盒以及编解码芯片也要适应这一发展的要求。

互联网数字电视 数字电视的下一个重要发展方向就是连接互联网,未来的消费者不必再为了检查邮箱、发送电子邮件、在线玩网络游戏、下载和播放网络视频、甚至收看流媒体视频(即IPTV),而必须跑到书房去独自呆在PC或笔记本电脑之前,他将可以直接在客厅舒适的沙发上用无线鼠标或无线键盘体验上述PC的所有功能。

从技术上讲,设计师可以考虑采用Wi-Fi、WiMAX、百兆/千兆以太网、xDSL、EPON/GPON等无线或有线技术实现数字电视与互联网的连接,当然他必须在数字电视中再增加一块应用处理器或多媒体处理器(可参阅本专栏相应的TI、NXP、视鼎科技、杰得微电子、Vivace等供应商的相应解决方案)。

DTV+PVR PVR(个人视频录像机)也是未来数字电视的下一个重要发展方向,随着未来的数字电视集成DSP或多媒体处理器,PVR功能将逐步融合到未来基于硬盘或微硬盘的数字电视产品中。

支持更丰富的互联接口 未来的数字电视还将支持更多的互联接口,如USB2.0、USBOn-the-Go、SD卡、MMC卡、1394和Wi-Fi等,以无缝实现与数码相机、数码摄像机、移动硬盘、PC、笔记本电脑、PMP、智能手机、数码打印机等数字设备的连接,共享相互之间的音视频信息。

总结 以上是目前数字电视的几个主要技术发展方向,但实际上,真正的未来数字电视产品很可能是上述几个技术发展方向的组合或融合。 高清电视 数字电视是指音视频信号从编辑、制作到信道传输直至接收和处理均采用数字技术的电视系统。依据其信息处理、传输能力,数字电视系统一般可分为标准清晰度电视和高清晰度电视。

高清晰度电视接收机的标准是具有下列最低性能的设备:

1.能接收、解调由高清晰度电视信号调制的射频信号。

2.能解码、显示1920X1080I/50Hz或更高图像格式的视频信号。

3.显示屏的高宽比为16∶9。

4.能正确显示高宽比为16∶9的图像,水平清晰度及垂直清晰度达到720电视线。

5.能解码、输出独立的多声道声音。

高清数字信号的解码和重现就是关系到我们广大用户本身的事情了。由于数字电视标准尚未确立,电视厂家也都没有在市场上出售的电视机中

能直接收看数字电视节目,还需要再接上一个机顶盒,接收并转换信号格式才行,如果没有机顶盒,你的数字电视分辨率再高也没有用。

但是,数字电视一体机就无需机顶盒,所以,数字电视一体机被认为是“真正意义上的数字电视”,代表了未来数字电视发展方向,而通过机顶盒收看数字电视是一种过渡性措施,是国家机卡分离政策,或者说国家数字电视标准没有出台前的临时性措施。中国视像行业协会秘书长白为民女士也认为:未来数字电视发展方向就是数字电视一体机,机顶盒是过渡性产品。

数字电视一体机目前能使用吗?

那么,数字电视一体机在目前的电视信号格式下能使用吗?这是许多消费者关心的问题。TCL数字电视一体机项目负责人讲:数字电视一体机其实是数模一体机,也就是兼容数字和模拟两种信号。在插卡的时候可以直接收看数字电视信号,在不插卡的情况下可以收看目前所有的模拟电视信号,与我们现在使用的电视没有任何区别。这是充分考虑数字电视在中国的普及还需要一段时间的基本现实。

发展优势

数字电视是数字信息技术的产物,以数字化、交互性为特色,它把电视传播方式与信息技术集于一身。与目前收看的传统模拟电视相比,数字技术的高精度使数字电视无论从画面的清晰度还是伴音效果都大大地提高了。同时数字电视播出系统能有效地节省频道资源。而且,由于宽带网能顺畅地传播即时视频图像和清晰的声音,所以能充分应用于各个行业,开展各种综合性业务。具体讲,数字电视有以下优势:

1) 现有模拟电视频道带宽为8MHZ,只能传送一套普通的模拟电视节目,采用数字电视后一个频道可传送6-10套数字电视节目,随着编解码技术的改进,传输数量还会进一步提高,电视频道利用率将大大提高。

2) 清晰度高,音频效果好,抗干扰能力强。数字电视信号的传输不像模拟信号受在传输过程中噪声积累的影响,且不受地理因素的限制,几乎可以无限扩大覆盖面,在接收端收看到的电视图像及收听到的声音质量非常接近演播室水平。此外,数字电视的音频效果好,可支持五声道的杜比数码(Ac—3)5.1 环绕立体声家庭影院服务。在同样覆盖范围内,数字电视的发射功率要比模拟电视小一个数量级。

3) 可以实现移动接收,便携接收及各种数据增值业务,实现视频点播等各种互动电视业务。实现加密/解密和加扰/解扰功能,保证通信的隐秘性及收费业务。而条件接收系统的应用,可以实现用户和业务的良好管理,确保了资金的有效回收。

4) 系统采用了开放的中间件技术,能实现各种互动应用,可与计算机及互联网互连互通,开展上网、点播、远程教育的推广普及、电子商务、互动游戏的应用。

5) 易于实现信号存储,而且存储时间与信号的特性无关,易于开展多种增值业务。

6) 由于保留了现有模拟电视视频格式,用户端仅需加装数字电视机顶盒即可接收数字电视节目。


© 2024 实用范文网 | 联系我们: webmaster# 6400.net.cn