自动检测技术论文

单片机控制系统的抗干扰优化设计

摘要在单片机控制系统的设计开发过程中,不单要突出设备的自动化程度及智能性,另一方面也要重视控制系统的工作稳定性。因此,单片机控制系统必须具有较高的灵敏度,但是灵敏度越高越容易把干扰引入系统中,故而抗干扰技术己成为单片机控制系统设计时必须考虑的环节。文章从系统受到干扰的主要原因和现象;系统可靠性设计的任务及方法等方面展开了说明及论述。并分析了单片机控制系统干扰的主要来源,介绍了印制电路板中地线和电源线的布线方法,从硬件和软件两个方面阐述了抗干扰设计。这些抗干扰方法实际应用中取得了良好的效果,使一些单片机控制系统在现场成功运行。【关键词】:单片机;抗干扰;控制状态;冗余技术

Abstract

Insingle-chipcontrolsystemdesignanddevelopmentprocess,notonlytohighlightthedegreeofautomationequipmentandintelligence,butwealsoattachimportancetotheworkofthestabilitycontrolsystem.Therefore,thesinglechipcontrolsystemmusthaveahighsensitivity,butmorelikelythehigherthesensitivitytointerferenceintroducedintothesystem,andthereforeanti-jammingtechnologyhasbecomethesinglechipcontrolsystemdesignmustbeconsideredpart.Articlesfromthemainsystemisdisturbedandphenomena;systemreliabilitydesignandotheraspectsofthetaskandmethodaredescribedanddiscussed.SCMcontrolsystemandanalyzedthemainsourceofinterferenceisintroducedintheprintedcircuitboardandthepowercordgroundwiringmethodfromtwoaspectsofhardwareandsoftwaredescribedanti-jammingdesign.Thepracticalapplicationoftheseinterferencemethodhasachievedgoodresults,sothatsomesinglechipcontrolsystemtorunsuccessfullyinthefield.

Keyword:SCM;Immunity;ControlStatus;Redundancy

目录

1.前言......................................................1

2.系统受到干扰的主要原因和现象...............................2

3.系统可靠性设计的分析和方法....................................3

3.1导致系统运行不稳定的内部因素...............................3

3.2导致系统运行不稳定的外部因素..........................4

4.硬件抗干扰设计.............................................5

4.1去耦电容配置..........................................6

4.2数字输入端的噪声抑制..................................6

4.3数字电路不用端的处理...................................6

4.4外围扩展存储器系统抗干扰处理方法.......................7

5.软件抗干扰技术.............................................8

5.1软件滤波算法...........................................8

5.2指令冗余技术..........................................8

6.结束语.....................................................9

参考文献...................................................10

2.系统受到干扰的主要原因和现象由于单片机控制系统应用系统的工作环境往往是比较恶劣和复杂的,其应用的可靠性、安全性就成为一个非常突出的问题。单片机控制系统应用必须长期稳定、可靠地运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大的损失。

影响单片机控制系统应用的可靠、安全运行的主要因素是来自系统内部和外部的各种电气干扰,以及系统结果设计、元器件选择、安装、制造工艺和外部环境条件等。这些因素对控制系统造成的干扰后果主要表现在下述几个方面。(1)数据采集误差加大。干扰侵入单片机控制系统测量单元模拟信号的输入通道,叠加在有用信号之上,会使数据采集误差加大,特别是当传感器输出弱信号时干扰更加严重。

(2)控制状态失灵。微机输出的控制信号常依赖某些条件的状态输入信号和这些信号的逻辑处理结果。若这些输入的状态信号受到干扰,引入虚假状态信号,将导致输出控制误差加大,甚至控制失常。(3)数据受干扰发生变化。单片机控制系统中,由于RAM存储器是可以读/写的,故在干扰的侵害下,RAM中的数据有可能被窜改。在单片微机系统中,程序及表格、常数存于程序存储器中,避免了这些数据受到干扰破坏,但对于内RAM、外扩RAM中的数据都有可能受到外界干扰而变化。根据干扰窜入的途径、受干扰数据的性质不同,系统受损坏的情况也不同.有的造成数据误差.有的使控制失灵,有的改变程序状态,有的改变某些部件(如定时器/计数器,串行口等)的工作状态等。(4)程序运行失常。单片机控制系统中程序计数器的正常工作,是系统维持程序正常运行的关键所在。如果外界干扰导致计数器的值改变,破坏了程序的正常运行。由于受到干扰后计数器的值是随机的,因而导致程序混乱。通常的情况是程序将执行一系列毫无意义的指令,最后进入"死循环",这将使输出严重混乱或系统失灵。

3.系统可靠性设计的分析和方法单片机控制系统应用的可靠性技术涉及到生产过程的方方面面,不仅与设计、制造、检验、安装、维护有关,还与生产管理、质量监控体系、使用人员的专业水平与素质有关。这里主要是从技术角度分析提高系统可靠性的最常用方法。

3.1导致系统运行不稳定的内部因素

(1)元器件本身的性能与可靠性。元器件是组成系统的基本单元,其特性好坏与稳定性直接影响整系统性能与可靠性。因此,在可靠性设计当中,首要的工作是精选元器件,使其在长期稳定性、精度等级方面满足要求。随着微电子技术的发展,电子元器件的可靠性不断提高,现在小功率晶体管及中小规模IC芯片的实际故障大约为10×10-9/h。这为提高系统性能与可靠性提供了很好的基础。

(2)系统结构设计。包括硬件电路结构和运行软件设计。电路设计中要求元器件或线路布局合理以消除元器件之间的电磁耦合相互干扰,优化的电路设计也可以消除或削弱外部干扰对整个系统的影响,如去耦电路、平衡电路等。同时也可以采用冗余结构,也称容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元〔包括硬件单元或软件单元〕数目来提高系统可靠性的一种设计方法。当某些元器件发生故障时也不影响整个系统的运行。对于消减外部电磁干扰,可采用电磁兼容设计,目的是提高单片机系统在电磁环境中的适应性,即能保持完成规定功能的能力。常用的抗电磁干扰的硬件措施有滤波技术、去耦电路、屏蔽技术、接地技术等。

软件是微机系统区别于其它通用电子设备的独到之处,通过合理编制软件可以进一步提高系统运行的可靠性。常用的软件措施主要有:一是信息冗余技术,对单片机控制系统应用而言,保持信号信息和重要数据是提高可靠性的主要方面。为防止系统故障等原因而丢失信息,常将重要数据或文件多重化,复制一份或多份“拷贝”,并存于不同空间,一旦某一区间或某一备份被破坏,则自动从其它部分重新复制,使信息得以恢复。

二是时间冗余技术,为提高单片机控制系统应用的可靠性,可采用重复执行某一操作或某一程序,并将执行结果与前一次结果进行比较对照来确认系统工作是否正常。只有当两次结果相同时,才被认可,并进行下一步操作。若两次结果不相同,可再次重复执行一次,当第三次结果与前两次之中的一次相同时,则认为另一结果是偶然故障引起的,应剔除。若三次结果均不相同,则初步判定为硬件永久性故障,需进一步检查。这种办法是用

时间为代价来换取可靠性,称为时间冗余技术,也称为重复检测技术。三是故障自动检测与诊断技术,对于复杂系统,为了保证能及时检测出有故障装置或单元模块,以便及时把有用单元替换上去,就需要对系统进行在线测试与诊断。这样做的目的有两个:(一)是为了判定动作或功能的正常性;(二)是为了及时指出故障部位,缩短维修时间。

四是软件可靠性技术:单片机控制系统运行软件是系统要实行的各项功能的具体反映。软件的可靠性主要标志是软件是否真实而准确地描述了要实现的各种功能。因此对生产工艺过程的了解程度直接关系到软件的编写质量。提高软件可靠性的前提条件是设计人员对生产工艺过程的深入了解,并且使软件易读、易测和易修改。五是失效保险技术:有些重要系统,一但发生故障时希望整个系统应处于安全或保险状态。此外,还有常见的数字滤波、程序运行监视及故障自动恢复技术等。

(3)安装与调试。元器件与整个系统的安装与调试,是保证系统运行与可靠性的重要措施。尽管元器件选择严格,系统整体设计合理,但安装工艺粗糙,调试不严格,仍然达不到预期的效果。部因素3.2导致系统运行不稳定的外导致系统运行不稳定的外部

外部因素:是指单片机控制系统所处工作环境中的外部设备或空间条件导致系统运行的不可靠因素,主要包括以下几点:

(1)是外部电气条件,如电源电压的稳定性、强电场与磁场等的影响;(2)是外部空间条件,如温度、湿度,空气清洁度等;(3)是外部机械条件,如振动、冲击等。

为保证系统可靠工作,必须创造一个良好的外部环境。例如:采取屏蔽措施、远离产生强电场干扰的设备;加强通风以降低环境温度;安装紧固以防振动等。元器件的选择是根本,合理安装调试是基础,系统设计是手段,外部环境是保证,这是可靠性设计遵循的基本准则,并贯穿于系统设计、安装、调试、运行的全过程。为实现这些准则,必须采取相应的硬件或软件方面的措施,这是可靠性设计的根本任务。中小规模的单片机控制系统在开发过程中,结合实际应用中的工作环境,采用以上的系统抗干扰优化设计的措施与方法,基本能有效地提高单片机系统的工作稳定性,充分地体现单片机控制系统在不增加控制成本的情况下提高机电设备的自动化性能与智能性的优越所在。

4.硬件抗干扰设计

系统硬件电路性能的好坏直接影响整个系统工作质量,应用硬件抗干扰措施是经常采用的一种有效方法。通过合理的硬件电路设计可以削弱或抑制绝大部分干扰。在单片机控制系统硬件抗干扰设计中,可以采用以下几种抗干扰措施。

4.1去耦电容配置

数字电路除了地线阻抗问题外,还存在电源线的阻抗问题。当数字电路受到高速跳变电流的作用时,也将产生阻抗噪声。可以在每一块集成电路芯片的要去耦的电源和地之间跨接去耦电容,以便随时充放电,一般选用0.1pF的独石电容。

4.2数字输入端的噪声抑制

数字电路输入端最危险的是脉冲噪声。因此抑制脉冲噪声是数字设备电磁兼容性设计着重考虑的因素。可以采用的方法有:在输入端接RC滤波器和施密特集成电路,其中RC滤波器的时间常数大于现场可能出现噪声的最大脉宽和小于信号宽度,这样既可抑制噪声,也不会丢失信号。在输入端通过加上拉电阻以及提高供电电源电压等措施提高输入端的电平来提高输入端的噪声容限。而提高输出低电平的噪声容限则采用降低信号源内阻的方法,如使用放大倍数为1的电压跟随器。三态数据缓冲器的低电平输出阻抗很低,还可以使用三态数据缓冲器,经过三态数据缓冲器驱动之后的信号具有较好的抑制低电平噪声能力。为了防止工作现场强电磁干扰或工频电压通过输出通道反串到测控系统,主要考虑采用光电隔离技术,它以光为介质进行间接耦合,使夹杂在输入开关量中的各种干扰电磁脉冲挡在输入回路的一侧,因此具有较高的电气隔离和抗干扰能力。

4.3数字电路不用端的处理

当数字电路的输入端有多余而被闲置时,与高电平“1”的输入逻辑状态一致。但开路的输入端具有很高的输入阻抗,容易受到外部的电磁干扰,使悬浮端的电平有时处于“1”和“0”的过渡状态,引起逻辑电路的误导。为保证系统运行安全,采用的方法有:(1)将不用的输入端固定在高电平上;(2)将不使用端与有用信号输入端并联接在一起。

4.4外围扩展存储器系统抗干扰处理方法

控制系统中配置的程序存储器及数据存储器芯片的信息电流大、工作频率高,设计时要着重考虑外界电磁干扰。主要是印制板电路中的抗干扰设计,可以采用的方法如下所述:

(1)数据线、地址线、控制线要尽量短,以减少对地产生的电容。特别考虑各条地址线的长短,布线方式应尽量一致,以免造成各线的阻抗差异过大,使地址信号在传输过程中到达终端时波形差异过大,形成控制信息的非同步干扰。

(2)由于开关噪声严重,因此考虑在电源的入口处,以及存储器芯片的K和GND之间接去耦电容。

(3)由于负载的电流较大,因此电源线和地线要尽量加粗,走线尽量短。同时,印制板两面的三总线相互垂直,以防止总线之间的电磁干扰。

(4)在总线的始端和终端加上适合的上拉电阻,可以提高高电平的噪声容限,增加存储器端口在高阻状态下的抗干扰能力和削弱反射波的干扰。

5.软件抗干扰技术

窜入微机测控系统的干扰,其频谱往往很宽,且具有随机性,采用硬件抗干扰措施,只能抑制某个频率段的干扰,仍有一些干扰会侵入系统|。因此,仅采取硬件抗干扰方法是不够的。单片机控制系统依赖于程序的执行来完成数据采集和其他各种功能。一个细微的故障,都有可能使程序跑飞或进入死循环,给系统带来不可预料的后果。因此采取软件抗干扰是十分必要的。软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视,为使程序混乱时重新步入正轨,程序设计中主要采取了以下几种方法。

5.1软件滤波算法

采用此种方法可以滤掉大部分由输入信号干扰而引起的采集错误。最常用的方法有算术平均值法、比较舍取法、中值法、一阶递推数字滤波法。可以根据被测信号的特点,在不影响系统效率的情况下将多次采集的数据去掉一个最大值,去掉一个最小值,其余数据取平均值,这种方法大大增加了数据可靠性。

5.2指令冗余技术

如果单片机受到干扰的影响,程序寄存器PC不是按正常情况下先取操作码,再取操作数,而是指向错误的字节,将操作数当作操作码,程序将出错。只要在双字节指令和3字节指令后加入几条单字节指令或将有效单字节指令重写就可以将PC值纳入正轨。因为空操作指令(NOP)是单字节的,当程序跑飞到某条单字节指令上时,就不会发生将操作数当成指令来执行的错误,可确保这些指令正确执行。

6.结束语

综上所述,抗干扰设计是单片机控制系统设计的重要环节,其设计的好坏往往决定整个系统的成败。本文从硬件和软件两个方面探讨了一些提高抗干扰能力的方法。这些方法有效可行,在剑杆织机电子送经/电子卷取控制系统、生物医学信号数据采集系统等的实际应用中取得了良好的效果,使系统在现场成功运行。

太原科技大学毕业设计(论文)

参考文献[1]马西秦.自动检测技术,机械工业出版社,2008.[2]徐明龙,王赤虎.利用单片机实现的模拟信号和数字信号单线混合传输,电子设计应用,2004,1.[3]董文武.微机接口技术,中国水利水电出版社,2001,9.[4]徐梅.单片机系统常用抗干扰措施,高校实验室工作研究,2006,4.[5]胡连柱,姜宝山.简析单片机软硬件的抗干扰设计技术,安徽电子信息职业技术学院学报,2005,01.

-9-


© 2024 实用范文网 | 联系我们: webmaster# 6400.net.cn