河工大现代医学仪器实验报告

YJ-02型医学电子教学仪器综合试验箱

现代医学仪器 课程实验指导

河北工业大学工程学院 生物医学工程专业 2016年春季

实验一 血氧饱和度测量仪设计实验

一. 实验目的

1. 了解血氧饱和度测试的意义和无创伤测试基本原理。 2. 掌握血氧饱和度测试的基本方法。 3. 了解血氧探头的构成及特性。

二. 实验的意义和原理

1. 血氧饱和度测定的意义

血氧饱和度是衡量人体血液携带氧能力的重要参数。由于氧通过呼吸进入细胞进而被血红蛋白所氧合是由多个环节组成,其中任何一个环节出现问题均可导致供氧障碍。监测动脉血氧饱和度可以对肺的氧合和血红蛋白携带能力进行估计,在临床上具有重要的意义。

在临床实践中,估计动脉氧合能力有多种方法,最常用的是取动脉血,但这种方法需要动脉穿刺或者插管,且不能连续监测。

无创伤检测动脉血氧饱和度的方法,是一种采用脉搏血氧测量法的动脉血氧饱和度测量方法,它的特点是能够在无创伤条件下实现连续测量动脉血氧饱和度,使用方便,应用前景广泛。

2. 脉搏血氧测量法基本建模原理

脉搏血氧测量法的原理是基于光学定律-----朗伯特—比尔定律建立无创伤血氧饱和度测量的模型和基于光学脉搏容积描记法建立动脉组织的模型。

比尔定律认为:光通过物质时,它的强度会或多或少的减弱,这种现象叫做光的吸收。实验证明:当单色光通过溶液时,透射光的强度与溶液的浓度、厚度、入射光的波长有关。称为吸光度。换言之,如果我们测出吸光度,而厚度、入射光的波长已知,则可以计算出溶液的浓度。脉搏血氧测量正是利用了这一原理。

在脉搏血氧测量法中,假设忽略动脉血管中其它成份影响仅考虑氧合血红蛋白(HbO2)和还原血红蛋白(Hb),则血氧饱和度SpO2的定义是:

SpO2=

C HbO 2

C HbO 2 C Hb

C HbO 2表示氧合血红蛋白含量;C HB 表示还原血红蛋白含量。

两种血红蛋白在红光谱区吸收差别很大,而在近红外光谱区,吸收差别较小,所以不同氧饱和度的血液光吸收程度主要与两种血红蛋白含量比例有关。也就是说由于在红光谱区和近红外光谱区里,氧合血红蛋白和还原血红蛋白有自已独特的吸收光谱,因此根据比尔定律可以决定血红蛋白含量的相对百分比,即血氧饱和度。

为了把问题简化,脉搏血氧测定法假设的组织模型由两部份组成:无血组织(皮肤,骨骼,静脉血等)表现为固定的光吸收,即直流成份。而动脉血管(由氧合血红蛋白和还原血红蛋白组成的动脉血液)则为脉动变化的光吸收,即交流变化的信号。假定光衰减量的变化完全是由于动脉容积

搏动所引起,从而就可以从光的总衰减量中除去直流成份,用余下的交流成份进行分光光度分析,计算出动脉血氧饱和度。

SpO2=K1R+K2R+K3

式中,K1,K2,K3是经验常数,而R 是在某个很小的时间间隔上,两种光电信号幅度变化量之比。 3. 动脉血氧探头

动脉血氧探头是由红光发光二极管、近红外发光二极管和高性能光敏二极管组成的混合光学传感器。使用波长660nm 的红光和940nm 的近红外光作为射入光源,利用手指作为盛装血红蛋白的透明容器,测定通过手指的光传导强度,来计算血红蛋白浓度和血氧饱和度。一般认为SpO2正常应不低于94%。

探头上壁固定两个并列的发光二极管,下壁有一个光电检测器将透过手指的红光和红外光转换成电信号,它所检测到的信号越弱,表示光信号穿透指尖时,被那里的组织、血液吸收掉的越多。

4. 电路实现原理

图2. 71 动脉血氧饱和度测试电路原理图

上图中,左上的标有(1)的部分是探头电路结构图。RED-LED 是红光发光二极管,IR-LED 是近红

外发光二极管,其右边是光敏二极管。

右上的标有(2)的部分是发光管驱动电路。为了保证光源的稳定,发光二极管采用恒流源进行驱动。PC4,PC5是主板通过程序发出的控制信号,例如,当PC5=1时,Q14、Q10、Q15、Q17导通,+5V通过Q10的集电极加到红外管的阳极,Q15的集电极加到红外管的阴极,向近红外二极管提供稳定的电流,使之发光。同理,当PC4=1时,红光二极管获得电流发光。这样,PC4和PC5交替控制相应的电路工作,形成产生控制红光、红外光发光的时序信号。

上图中下方标有(3)的部分是同步解调放大电路。负责将两路微弱的脉搏信号从干扰信号中检测出来,将信号同步解调还原,再从中分离出交流信号AC, 直流信号DC 和放大滤波到一定数值,提供给计算机进行模数转换及处理。图中AD7是直流信号,AD6是交流信号。为了避免AD6出现负信号,在交流信号通道中,设有基准电平调整电路。 三、实验步骤和测试结果

图2.72 血氧饱和度测试电路布局图

1、 将血氧模板固定于主板上方,但模板上方的26芯插座(J5)与主板的26芯插座(J2)不连接。

图2.73 血氧探头驱动电路布局图

用连接线将模板PC4插孔及+5VA插孔与主板右侧的4.05V 插孔相连。使模板获得电源,同时用连接线将模板右侧GND 插孔与主板GND 插孔相连,将模板下部GND 插孔与PC5插孔相连。

装上血氧探头,取下短路器J7, 使其开路。开启主板电源,用电流表测量I2(1)插孔与I2(2)插孔之间的电流,上面插孔I2(1)为正端,应为10mA 左右,如果偏离,调整RW10。调整以后拔除连接线,插上J7。

用连接线将PC5插孔与主板左侧的4.05V 插孔相连,同时用连接线将模板右侧GND 插孔与主板GND 插孔相连,模板的下部GND 孔与PC4插孔相连。

取下短路器J6, 使其开路。开启主板电源,用电流表测量I1(1)插孔与I1(2)插孔之间的电流,上面插孔I1(1)为正端,应为10mA 左右,如果偏离,调整RW11。调整以后拔除连接线,插上J6。

2、 断开电源,将模板J5与主板J2用扁平线相连,PC4接+5VA,PC5接GND 。接通电源。

图2.74交直流信号调理电路布局图

将食指或中指放入血氧探头,用示波器观察V4输出,应有波形出现,其峰—峰值应为4V 左右。如果不是,调整RW9, 一般RW9阻值在 30K-35K范围,可用万用表测量,测量方法将表笔放入连接RW9两端标注为1和2的两个插孔。然后观测VAC 波形,其基准应在0V 以上,以适应A/D转换的需要,幅度为0~4.5V, 若不符合,调整RW7, 一般RW7的2与1之间电阻为6K 左右,2与3之间电阻为4K 左右。测量RW7须将模板与主板连接断开。

3、 将手指放入血氧探头,用示波器观察VDC 波形,调节RW8,使幅值为2.0V 左右的直流信号,如前所述,这是从探头的输出信号中分离出来的直流分量,如果幅值过大或过小,可调整放大器的反馈电阻RW8, 一般,RW8阻值在 4.5K~5.5K 之间。可预先调好,调整RW8的方法与RW9类似。

4、 拔除PC4,PC5上的连线。在实验箱主板USB 指示灯亮的情况下,点击计算机主菜单“血氧饱和度实验”按钮进入血氧饱和度测试,显示如下:

图 2.75

5、 测试者将探头夹住手指,不要说话、动作,在实验箱主板USB 指示灯亮的情况下,点击“测试” 按钮,血氧饱和度测试开始,此时从探头采集到的波形显示在屏幕上,其中显示的曲线分别为透射过来的红光波形和红外光波形。左边数码管显示血氧饱和度,右边数码管显示心率,且实时刷新。如下图所示:

图 2.76

6、 当显示的波形符合脉搏波形,可以点击“停止”按钮,此时屏幕上的波形停止滚动,显示当前的波形和当前的血氧饱和度及心率,若再点击“测试”按钮则继续测试,如下图所示:

7、 保存测试波形的方法:当测试结束(即点击“停止”按钮后,波形显示不再变化),点击“保存”按钮将测试的数据保存为文本文件,测试的波形将保存为“*.SP0”格式或者“*.txt”的文件。学生可在老师指导下编写计算机程序,调用文本文件。

8、 点击“打开”按钮可以打开已保存的文件,方法如下:

图 2.78

9、实验完毕,插线除去。 四、实验总结 (1)实验原理总结

血氧饱和度是衡量人体血液携带氧能力的重要参数。由于氧通过呼吸进入细胞进而被血红蛋白所氧合是由多个环节组成,其中任何一个环节出现问题均可导致供氧障碍。监测动脉血氧饱和度可以对肺的氧合和血红蛋白携带能力进行估计,在临床上具有重要的意义。

(2)实验过程总结 实验过程简单,易于操作。 (3)实验心得与创新性设想

通过本次实验,明白了血氧饱和度测量的原理。

实验二 脉搏波波速测试仪设计实验

一. 实验目的

1、了解脉搏波波速的测量意义和原理。

2、掌握脉搏波波速的测量方法。

二. 实验的意义和原理 1、测量脉搏波波速的意义

心脑血管疾病是导致死亡的主要疾病之一,心脑血管疾病发病的主要原因与动脉的病

变有关,动脉病变是心脑血管疾病的病理基础。目前治疗的手段与方法中往往忽视了病变的关键——血管壁的改变,随着对心血管病变的研究逐渐深入,人们意识到血管壁的病变是各种心血管事件发生的基础。我们知道动脉弹性的改变早于结构改变,早期发现和干预血管病变的进展是延缓和控制心血管事件的根本措施,有研究表明,大动脉功能和结构的损害,是导致早期血管改变,发生包括高血压在内的许多心血管病的危险因素,而动脉僵硬度已被认为是心血管病独立的危险因子,已经成为研究的热点课题。

截止目前,用于评价大动脉的结构和功能的方法已有很多。如血管造影或其它成像技术等有创方法可精确评价动脉管腔或分心动脉壁结构,但是这些方法由于操作复杂、费用高昂,需要非常精密的设备,限制了其在临床中的应用;另外,还有一些无创检测方法,如超声技术(高分辨率超声、超声多普勒、超声示踪)和计算机分析图象信号和(或)超声信号,来研究某些动脉轴和位点的功能和结构,这些相对复杂的技术仅用于某些实验室。在无创方法中,脉搏波速度(PWV )的测定已经在较长的时间内广泛用于评价动脉壁扩张性和硬度的一种有效手段。该方法无创伤、操作简单、结果准确、重复性好,可广泛用于临床治疗和流行病学的研究,并且,该方法非常适合于家庭使用和社区医疗服务推广应用。作为判定心血管疾病的重要依据。

2、脉搏波波速与血管性能

健康人的血管是一个弹性腔,在每个心动周期中, 动脉内的压力及血管的充盈程

度发生周期性的变化, 这种周期性变化不停地向外周血管传播。用压力传感器可以记录到表浅动脉的搏动, 从而得到压力脉搏波。图2.80所示为压力传感器测得的桡动脉脉搏波,图中各个特征点的生理学意义分别为:a 波:心房收缩波;b 点:主动脉开放点;c 点:主动脉压力最高点;d 点:主动脉弹性扩张降压点;e 点:左心射血停止点;e1点:左心舒张开始点;f 点:二尖瓣开放点。

图2.80

心室射血产生的压力波动沿动脉树传播,速度由动脉壁的弹性和几何性质及所含液体的特征(密度)决定。由于血液是含在弹性管道(动脉血管)中的不可压缩的液体,能量传播主要发生在动脉壁上而不是通过血液进行,因此动脉壁的性质、厚度和动脉腔径是影响脉搏波传导速度(PWV )的主要因素。事实上,已经证实弹性管道中的PWV 与管壁弹性相关。

若血管出现了硬化现象,则血流的速度会加快。硬化程度越高,速度越快。通过分析两个不同地方的脉搏波的波形信息,可以得出两路波形的时间差,再测量出两个测量点之间的距离,就可以得到血流的速度。例如,上臂至心脏及踝关节到心脏动脉间的脉搏传播速度(baPWV),其标准是1400cm/S,数值越高,大脑、心血管疾病的发病风险越大。测量方法是:首先同步检测上肢与脚踝部位的脉搏波,记录波形图,得出两个相同点上波形的延迟时间,并测出血管长度,利用公式baPWV=

3、脉搏传感器

脉搏传感器采用了半导体应变片式压力传感器,它的感压结构采用带波纹的金属-橡胶膜片,这种特殊结构可尽量增加其位移/ 压力比;检测探头设计了一个液囊耦合腔,它不仅可以调节传感器的阻尼比,而且还可作为脉波信号传递的匹配介质,这样的设计可获得比较理想的动态特性。测量时,通过对传感器施加一定的预压力来获取被测点的脉搏波。

4、电路实现原理

由前置放大器、信号调理电路(滤波、放大)、A/D转换电路等组成,单片机在程序控制下进行两路脉搏波同步采样;将其转换成数字量后由单片机通过USB 接口将脉搏波数据传送到计算机。经过以上的处理可得到完整性好、失真小、基线稳定、振幅适中的脉搏波形,专家系统根据输入的两个脉搏波测量点之间的距离、其他生理参数(血压、身高、体重)及脉搏波参数数据库中的数据,对人体动脉硬化程度进行检测,同时对其他心血管疾病做出诊断。在做出诊断的同时,能给用户提出相应的治疗和预防措施,得出所需要的结果。

血管长度

来计算波速。

时间

图2。81 脉搏波波速测试电路原理图

5 PWV的计算方法

本系统中利用压力传感器同时测量人体手腕动脉和脚腕动脉两个不同的脉搏波,将数据传送给计算机,计算机经过上述一系列处理然后,得到两路脉搏波波形的特征点。通过统计分析两组波形相邻最低点的时间差,如图2。82,便可以得到两路脉搏波传播的时间差△t ,然后分别测量出心脏到手腕测量点的距离La 和心脏到脚腕动脉测量点的距离Lb 输入计算机,脉搏波波速可计算为:

PWV =

Lb -La

∆t

上面求出的PWV 主要反应了脉搏波在下肢动脉血管中的传播速度,本系统中也是利用该PWV 来诊断动脉硬化,因此,主要反应了下肢主动脉的动脉硬化程度。使用者也可以测量其他任意一段动脉血管中脉搏波的传导速度,并可以记录每次测量的结果,通过系统给出的变化趋势图,能够很清楚的看出该段动脉血管的弹性变化情况。在测量时,测量点的选择要注意:测量点的脉搏要强烈并且在体表就能感觉到;两个测量点要有一定落差,身体左右部分同等高度的位置不要同时测量,比如说同时测量左右手腕的桡动脉,因为实际上从心脏到该点的距离是相等的,测出的PWV 接近于零。

三、实验步骤与实验结果

图2。82 两路脉搏波波形

图2.83 脉搏波波速测试电路布局图

1. 将脉搏波模板固定于主板上方,但模板上方的26芯插座(J5)与主板的26芯插座(J2)不连接。用万用表测量RW7-RW10的阻值,应符合以下数值。RW7,RW9为6.5K 左右,RW8,RW10在7K-8K 之间。

图2.84 放大增益电位器布局图

调整方法为:虚线位置不插信号连接线,用万用表笔插在对应的1和2两个信号连接孔进行测量。

图2.85 基线调整电位器布局图

同样,调整方法为:虚线位置不插信号连接线,用万用表笔插在对应的1和2两个信号连接孔进行测量。

2.电位器阻值调整好以后,用信号连接线将虚线所示连接起来。并将模板与主板连接起来,开启主板电源。

图2.86 脉搏波波速测试电路布局图

插入两个传感器,这时用示波器观察PW1Vc 和PW2Vc 点波形,可以看见是一条直线,即基线,基线波形幅度应为1.5V 左右,如果过小,调整RW8和RW10。两路测试电路是完全对称的,其对应点的波形应完全一样。将主板与计算机相连,在实验箱USB 指示灯亮的情况下,

点击菜单上的“脉搏波速实验”按钮进入脉搏波速测试,显示如下:

图 2.87

3. 测试者坐在椅子上,将sensor1(左边) 探头用绑带绑在手腕部,sensor2(右边) 探头用绑带绑在脚腕部,不要说话、动作,在实验箱USB 指示灯亮的情况下,点击“测试” 按钮,脉搏波速测试开始,此时从探头采集到的波形显示在屏幕上,其中显示的蓝色和绿色曲线分别为手腕动脉脉搏波,脚腕动脉脉搏波。如下图所示:

4、当显示的波形符合脉搏波形,可以点击“停止”按钮,此时屏幕上的波形停止刷新,请等待数秒显示当前的波形,通过点击“测试”按钮继续测试,如下图所示:

5、点击“计算”按钮可以计算脉搏波速,提示您:“您是否已经输入个人信息?选是则继续计算,选否则重新输入。”如下图所示:

选“是”则用您早前输入的人体信息参与计算脉搏波速,显示如下:

选“否”则重新输入人体信息后计算脉搏波速,如下图所示:

图 2.92

6、可以手动取点来计算脉搏波速:在打开脉搏波速文件或停止测试后,界面上显示脉搏波形时,先选中一部分波形将之放大,左键单击上图蓝色的波形,自左向右,自上而下的拖动鼠标至下图绿色的波形上,此时出现虚线的窗口,如下图所示:

图 2.93

放开左键,则窗口中显示您选中的放大后的部分波形,显示如下:

图 2.94

如若重新选择要放大的波形,则右键点击上图的波形出现菜单:“清除描点”,之后重新选择波形,或者直接在波形的其他区域内选择,显示如下:

图 2.95

在放大的波形窗口中,左键单击蓝色波形窗口,出现蓝色的虚线,该线则为您选中的波形起始处,可单击其他点来最终确认波形起始点;左键单击绿色波形窗口,用同样的方法确定波形起始点,该线为绿色的虚线,显示如下:

右键点击原始的波形窗口出现菜单:“计算”,显示如下:

图 2.97

提示您:“您是否已经输入个人信息?选是则继续计算,选否则重新输入。” 如下图所示:

选“是”则用您早前输入的人体信息参与计算脉搏波速,显示如下:

图 2.99

选“否”则重新输入人体信息后计算脉搏波速,显示如下:

如若重新选择要放大的波形,则右键点击上图的波形出现菜单:“清除描点”,显示如下:

图 2.101

7、保存测试波形的方法:在测试结束后(即点击“停止”按钮后,波形显示不再变化),

点击“文件(File )”菜单将测试的数据保存为“*.txt”文件或者“*.pwv”格式的文件。学生可在老师指导下编写计算机程序,调用文本文件。

图 2.102

8、点击“打开”按钮可以打开已保存的文件,方法如下:

图 2.103

例如:选择1.pwv 文件,打开后显示界面如下:

图 2.104

打开后可如第4,5选取要放大的波形,取点后计算脉搏波速。 9、实验完毕,插线除去。

实验项目三:心电测量功能模块实验

一、实验的目的和任务:

1、了解并初步学会人体心电的测试功能模块的基本原理和设计方法。 2、掌握QRS 波群的测量方法。 3、观察运动对心电的影响。 4、计算公式

心率= 60000 / ((波形R2的X 轴位置 - 波形R1的X 轴位置) * 5.282) * 波形放大比率

--------式 1.1 Q-T 间期= (波形T 的X 轴位置 - 波形QRS 的X 轴位置) * 5.282 /波形放大比率

--------式 1.2 P-R 间期=(波形QRS 的X 轴位置 - 波形P 的X 轴位置) * 5.282 / 波形放大比率

--------式 1.3 QRS 间期= (波形S 的X 轴位置 - 波形QRS 的X 轴位置) * 5.282 /波形放大比率

--------式 1.4 QTC 系数= (波形T 的X 轴位置 - 波形QRS 的X 轴位置) * 5.282 / (波形R2的X 轴位置

- 波形R1的X 轴位置) --------式 1.5

5、对保存的二进制文件读取数据的方法:(openfilename :文件名称,xdtData :数组)

Open openfilename For Binary Access Read Write As #1

Get #1, 1, xdtData Close #1 二、实验原理

进行低通滤波,滤除信号中的高频部分。CD4052的功能是在不同的时刻控制不同的信号输出,U22配以阻容组成差分放大电路。在U23的输出端形成初步放大后的差动信号Vo, 该信号经过C47和R77高通滤波,再经过U24二阶低通滤波后和二次放大后,形成完整的心电采集信号XDVb, 由RW6将其直流电位抬高2V 左右输出,其目的是避免出现负信号,以适应模/数转换电路的需要。MAX295的作用是信号滤波。 三、实验步骤

图1.2 心电测试电路布局图

1、测量“差分放大调整电位器”RW4的阻值,应为1.45K 左右,调整方法,测量RW4两

插孔间电阻,调整RW4,直至电阻达到目标值。如下图所示:

图2 差分放大调整

2、测量“二级放大调整电位器”RW5的阻值,应为15K 左右,调整方法与RW4相同。如下图所示:

图1.3 二级放大调整

3、测量“基准调整电位器”RW6的阻值,1和2插孔之间的电阻应为4K 左右。此电位器

是为抬高直流电平所设置,当无输入信号时,电路输出直流电平应为1V--1.5V ,若偏离此值,调整RW6。如下图所示:

图1.4 基准调整

4、将四节2号电池放入电池盒,电池盒引出线与心电测试模块下方的电池插座(J2)相连,测量电源电压值,其正电压应大于+4.5V,,负电压值应小于-4.5V 。否则说明电池电压不足,断开系统电源,更换电池。由于负电源是由正电源通过电路转换得到,故负电源的绝对值一般比正电源小0.5V 左右,这是正常情况。

5、为增强人体皮肤电信号,尤其是春、秋、冬季节,在测试前需要在导联金属部分涂擦生理盐水(或用5%的食盐兑水)或酒精,也可将盐水或酒精涂在导联所接触的皮肤表层。

6、将有红色标志的夹子与导联相连接人体右手,绿色夹子与导联相连接右腿,黄色夹子与导联相连接左腿,白色夹子与导联相连接左手,此接法称为标准肢体导联,它是以两肢体间的电位差为所获取的体表心电信号,可以测三组心电信号。由程序控制模拟开关进行切换,三组信号分别是:VI=VL-VR , VII=VF-VR, VIII=VF-VL(注:VL :左手,VR :右手,VF :左腿,RL:右腿)。 7、用示波器观察XDVc,, 应观察到类似的如下波形:

图1.5 标准心电波形

上、下肢体导联应良好接触,人体仰卧或静坐,手臂放置平稳,不与导体﹑桌面﹑或其他物体接触。

8、放大成形的心电信号需要将其直流电位抬高,一般2V 左右,可通过调整RW6实现。 9、不同的人体心电波形会出现差异, 这是正常现象。图2.63所示的P 、Q 、R 、S 、T 各个

波形组成的周期为理想波形周期,在很多情况下,波形可能会缺失某个波或某个波不明显。

10、由于不同的人体生理电信号差异较大,所以放大倍数有时需要调整,调整放大倍数通

过调整RW5和RW6实现。调整时先断开连接插线,调整完毕后再将插线连好。 11、在做心电测试实验之前,了解一下心电测试实验的基本功能是有必要的。心电测试实

验分为“单组电位差(导联) 测试”和“三组电位差(导联) 测试”。无论是“单组电位差(导联) 测试”还是“三组电位差(导联) 测试”,测试数据均可保存为文件,测试数据可反复调出显示。单组电位差(导联) 测试数据可作横向和纵向放大,放大倍数最大为8倍,同时可在保存后的波形上人工选定波形的特征点,如“P 波的起点”、“QRS 波群的起点”、“S 波的末点”、“T 波的末点”,在所有特征点人工标定好后,可以计算出脉率、QT 间期、QTC 系数、PR 间期、QRSD 间期等参数值。 12、心电测试实验

(1) 单组电位差(导联) 测试。测试者将有红色标志的夹子与导联相连接人体右手, 绿色标志的夹子与导联相连接右腿,黄色标志的夹子与导联相连接左腿,白色标志的 夹子与导联相连接左手。不要说话、动作,选择“单组电位差(导联) 测试”。在实验箱 USB 指示灯亮的情况下,点击“测试” 按钮,这时测试者的心电波形显示在计算机的 屏幕上(如图6),测试者在认为心电波形符合时,可点击“停止”按钮,同时可对 测试的心电波形保存。

(2)三组电位差(导联) 测试。测试者将有红色标志的夹子与导联相连接人体右手,绿色标志的夹子与导联相连接右腿,黄色标志的夹子与导联相连接左腿,白色标志的夹子与导联相连接左手。不要说话、动作,选择“三组电位差(导联) 测试”。在实验箱USB 指示灯亮的情况下,点击“测试” 按钮,这时测试者的心电波形显示在计算机的屏幕上(如图7),测试者在认为心电波形符合时,可点击“停止”按钮,同时可对测试的心电波形保存。

13、保存心电测试波形的方法:在测试结束后(即点击“停止”按钮后,波形显示不再变

化),点击菜单“文件(&File)”下的子菜单“数据保存为xdt 文件(&Save)”,心电测试的波形将保存为“*.xdt”格式的文件。点击菜单“文件(&File) ”下的子菜单“数据保存为txt 文件(&Conserve)”,将测试的心电波形数据保存为文本文件。学生可在老师指导下编写计算机程序,调用文本文件。 14、打开已保存的文件,方法如下:

图1.8单组电位差(导联) 波形

例如:选择11.xdt 文件,打开后显示界面如下:

15、特征点人工标定方法如下:

在波形显示区域,在特征点确定的位置点击鼠标右键,标定出各特征点。

16、在所有特征点标定好后,点击鼠标右键,选择“计算”,可得出脉率、QT 间期、QTC

系数、PR 间期、QRSD 间期参数值,显示如下:

17、要想了解各参数的含义,可将鼠标放在参数名称的位置,自动显示参数的解释意义。

显示如下:

18、实验完毕,拔除电池盒,卸下导联,除去所有连接插线。

四、实验总结

要求从实验原理,实验过程和实验心得上进行全面总结。

心电信号是人体心脏功能的重要体现,通过对心电信号的测量分析,有利于了解心脏的健康状况。实验中,通过认真阅读实验知道是以及在老师的指导下,在组员的配合下共同完成了心电信号的测量,得到的波形还是比较理想的。通过本次实验,明白了心电测量的原理,心电导联以及右腿驱动电路的作用。

实验项目四 血压测量功能模块实验

一、实验目的

1、掌握血压测量功能模块和电子血压计的原理及实现方法。 2、了解用于测量血压的压力传感器的特性。

二、实验内容

使用充气泵、放气阀、压力传感器、腕带等材料,经过充气和放气过程获得传感器输出的压力信号,通过对压力信号的识别与处理,计算出人体收缩压和舒张压,血压数

图2.2 波形图

1、 血压传感器为压力传感器,测量范围:40 mmHg ~280mmHg ,测量精度:静态压力±3 mmHg 。 2、由U17/A构成的电路给传感器供电,传感器输出信号送到U17/B进行放大,RW2用于

零点调整,U17/B的输出信号: XYVd=R53*(Vout+ - Vout-)/R51 + R53*VSR/ R51,它送到U17/C比较器的负端,其正端为一个积分信号,积分信号受程序发出的XY50Hz 信号控制, 如图2.1所示。在每个周期的高电平期间Q8导通,积分电容C58放电,时间大约为2ms ,在18 ms的低电平期间,积分电容充电波形如图2.2中的图2所示,当积分电容上的信号幅度超过传感器的输出信号时,比较器U17/C输出翻转(图2.2中的图3), 再经过Q9的反相, 最后输出一串频率为50Hz 的占空比变化的波形给单片机(图2.2中的图4), 其高电平的宽度取决于U17/C的翻转时间,亦取决于压力传感器的输出信号幅度。 检测原理:开始充气加压到180mmHg ( 24Kpa ),然后放气,压力降低△P (根据一次血压检测占用时间确定),保持采集一个以上脉跳的值,取其峰值P 和当前压力值Pc 。重复以上步骤直至压力降低到50mmHg 以下。在峰值P 中找出最大值Pmax ,Pmax 对应的压力值Pc 就是平均动脉压Pm ,然后根据经验公式Pi = Pmax ×k 计算出Pi ,k 为经验系数,k

3、计算机通过对XYOUT 波形的识别、处理,得出压力值,依据一定的模型,计算出人体的收缩压、舒张压和心率。

4、进气泵和放气阀分别由单片机发出的PWM 和PUMP 信号控制,通过三极管等器件构成的驱动电路驱动泵和阀动作。

5、LP2951用于产生4.05V 的基准电源,一方面作为部分电路的工作电源, 另一方面通过精密电阻分压,获得VIR 、VSR 、VAR 等几个不同的电压值,作为控制信号或参考信号。

四、实验步骤

血压测试电路(右上角为信号源电路) 布局如下:

图2.3 血压测试电路布局图

1、测试系统工作电源4.05电压,若实际值偏离±0.05V 以上,应调整RW3,使其达到或接近4.05V 。

图 2.4 电源调整

2、在压力传感器空载状态下, 调节RW1, 使得U17的1脚输出信号VIN+为1.50v ,此为满度调整。调节RW2,使得U17的10脚电压为340mv ,此为零点调整。

图2.5 满度与零度调整

3、将袖带固定于腕关节部位。

4、用示波器观察有关测试点其波形应与图2.2中的图1~图4所示。 5、分别测左手腕和右手腕的血压。

6、在实验箱USB 指示灯亮的情况下,先按主板左上方“血压测试”键,然后点击“血压实验”按钮

进入血压测试,显示如下:

图 2.6 血压测量待机图

测试方法:测试者在血压手腕带正确固定好后,点击“测试” 按钮,血压测试开始,此时USB 指示灯熄灭,测试者等待USB 指示灯重新点亮时,点击“数据”按钮,读取血压的测试值。显示如下:

图 2.7 血压测量图

若计算机提示“血压测试失败,请检查后重新测试”, 将袖带固定于腕关节部位后重复步骤7。

8、右上角为信号产生电路,可产生50Hz 左右的方波、正弦波、三角波,用示波器观察PA,PB,PC 信号连接孔,可看到相应波形,调整RW20,RW22,RW23对其幅度有影响。 9、实验结束,将所有连线除去。

四、实验总结

要求从实验原理,实验过程和实验心得上进行全面总结。

血压测量实验是使用充气泵、放气阀、压力传感器、腕带等材料,经过充气和放气过程获得传感器输出的压力信号,通过对压力信号的识别与处理,计算出人体收缩压和舒张压,血压数据传到PC 机上显示。

实验项目五 肺功能参数测试模块实验

一、 实验目的

1、掌握无创检测肺功能参数模块电路实现原理和设计方法。 2、通过实验了解肺功能参数的定义及其临床意义。 3、掌握肺功能传感器的使用方法。

二、实验内容

肺功能传感器获取的信号经放大调整后,进行模/数转换,波形图可在PC 机上显示,同时PC 机对波形处理后得出相关的各项参数。

图3.2 输出信号(直流电位未抬高)

图3.3 输出信号(直流电位已抬高)

1、肺功能检查通常分为三类:成像类、生化类和动力学肺功能参数测量。本实验采用第三类测量方法,以呼吸系统动力学原理测量有关肺功能参数,如呼气肺活量、用力肺活量等,综合评估这些参数,能有效反映肺脏、气管、支气管等呼吸道器官的状态及其调节功能。

2、肺功能参数测试电路见图3.1。肺功能测试传感器采用差压式孔板流量传感器, 气流通过孔板在孔板两端形成的压力差反映了气流流量的大小, 通过传感器的气流流速不同, 其输出电压信号不同,传感器腔的直径为20mm ,中间小挡气流孔的直径为12mm 。设气流流速为I(单位L/MIN),输出信号为Vin(单位mv), 根据标定结果得到如下拟合曲线。 1) 当Vin>=0(mv), 2) 当Vin

--------式 2.8 --------式 2.9

3、人在吹吸气过程中,通过传感器获得与气流信号相对应的电压信号。电压信号经过电压跟随器U28以后进入放大电路,作为传感器与放大电路之间的缓冲与阻抗匹配。电压跟随器的突出优点是具有极高的输入阻抗和较低的输出阻抗。 U29将传感器的输出信号进行放大;

U29/A第一级输出为:FVa=(RW7/R83)×(VIN+ - VIN-); --------式 2.10 U29/B第二级输出为: FVb= FVa×(1+RW8/R87+RW8/R88)+RW8×5/R87

--------式 2.11

式中RW8×5/R87为上拉电压。呼吸气时,传感器输出信号有正负,需要将基准电位抬高,以避免出现负信号送入模/数转换电路的情况出现。

4、如上所述,U29的输出信号FVb 实际上表示的是气体流量参数I ,经MCS-51单片机处理后,测试数据通过USB 口传到PC 机,PC 机将气体流量参数、流速参数代入一系列的积分公式,计算出若干项表征肺功能的参数,参数的具体含义见肺功能测试结果的注释。 5、肺功能参数计算公式:

找出波形特征点:a 、b 、c 、d 、e 、f

图3.4 波形特征点图

flowdata :采样值转换后的流量值,公式中的常数k 为经验系数

最大肺活量=⎰k *(flowdata(t) +flowdata(t+1))dt --------式 2.12 c f

用力肺活量=⎰k *(flowdata(t) +flowdata(t+1))dt --------式 2.13 d f

最大呼气流量=|flowdata(e点X 轴)| --------式 2.14

最大呼气中段流量= k *用力肺活量 --------式 2.15

四、实验步骤

肺功能参数测试电路布局图如图3.5:

图3.5 肺功能参数测试电路布局图

1、用连接线将主板和模板相连,连接方法是:将连接线两头的插头分别对应的插到主板和模板的插座上,如3.6图所示,主板插座与其相同:

图3.6 肺功能模块插座示意图

2、依照原理图将电阻用插线连接。各由三个电阻构成的“R83~ R88组”分别与电路中

R83~R88相对应, 可从3个不同阻值的电阻中选择一个作为R83~R88, 以R83为例说明其连接方法,其余与R83类似。如下图所示:

图 3.7 R83示意图

上面一个插孔有三条虚线分别与下端三个插孔相连,其下端所指向的3个插孔是3个不同的电阻选择。例如,如果将下端3个插孔的中间一个与上端插孔相连,则R83为3.3K 电阻,建议选择阻值如下:

表 1

3、放大倍数调整。测量RW7阻值应为92~96K ,如果偏离,则调整RW7。调整方法是,在不

接线的情况下,测量连接孔2和3之间电阻,调整电位器RW7,使其电阻达到目标值,测好以后用插线将用虚线相连的两个连接孔1和2连起来。如下图所示:

图 3.8 放大倍数调整电位器示意图

4、测量RW8阻值应为6K 左右,如果偏离,调整RW8。调整方法与RW7相同。如下图所示:

图 3.9 基准电位调整电位器示意图

5、不接肺功能传感器,将主板右侧信号源引入本模板,可引入的信号有:PA(正弦

波),PB(三角波),PC(方波), 通过调整RW23,RW22,RW20来改变信号源的峰-峰值, 一般为20~30mV(出厂时已调好) ,用此信号源代替传感器的输入信号,正端用插线接入Vin+连接孔,负端(GND)接入Vin-连接孔。用示波器观察输出信号Fvb ,Fvb 峰-峰值应为

2.5~3.5V 左右。也可使用外部信号源。使用信号源的目的主要是测试电路的放大功能,由于电路结构不同,使用信号源时,输出与输入波形比较可能会不同。

6、去除信号源,接肺功能测试传感器,用纸咬嘴套在传感器吹嘴上,用嘴对着传感器腔体

先吸后吹,即吸足气后,猛力快速用最高呼气流量向传感器内吹气,得到的波形如图22所示。

7、吹吸气时,用示波器观察Fva 、Fvb ,可见波形如图21或图22所示,调整RW7改变放大

倍数,输出波形幅度随之改变。调整RW8,除改变放大倍数外,同时还改变输出信号的直流基准电位;一般基准电位确定在2.0~2.2V ,当不施加传感器信号时,可在U29/B的输出端测得直流电位为2V 左右;可观察到输出信号波形上下移动。进行本实验后,应将电位器恢复到本实验第3,4条所推荐的电阻值。

8、肺功能信息输入

点击菜单“肺功能”下的子菜单“肺功能信息”进入肺功能信息输入,显示如下:

图 29肺功能子菜单

以上各参数的具体含义:姓名(学号)、年龄、身高、体重、性别,分别为被测试者的姓名(学号)、年龄、身高、体重、性别。

9、肺功能测试

在实验箱USB 指示灯亮的情况下,点击“肺功能实验”按钮进入肺功能测试,显示如下:

图 30 肺功能测试待机图

具体测试方法:测试时测试者平静呼吸,然后用力吸气,紧接着用力呼气,点击“停止”

按钮,显示如下:

选择测试者的信息,点击“信息”按钮,以确认测试者的信息参数,再点击“专家”按钮,计算得出测试结果,显示如下:

点击各超链接可查阅参数的医学含义,如点击“最大肺活量”,显示如下:

测试结束后,可点击菜单“文件(&File) ”下的子菜单“数据保存为txt 文件(&Conserve)”,将测试的波形数据保存为文本文件。学生可在老师指导下编写计算机程序,调用文本文件。

10、实验结束,将所有连接线除去。

四、实验总结

要求从实验原理,实验过程和实验心得上进行全面总结。

肺功能传感器获取的信号经放大调整后,进行模/数转换,波形图可在PC 机上显示,同时PC 机对波形处理后得出相关的各项参数。


© 2024 实用范文网 | 联系我们: webmaster# 6400.net.cn