热重分析法

热重分析法 (TGA)

热分析法

第二节 热重分析

17.4 热重分析仪TG基本原理

热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系。检测质量的变化最常用的办法就是用热天平,测量的原理有两种,可分为变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录

电流的变化,便可得到质量变化的曲线,其原理见图5—1所示。

热重分析仪的简单工作原理以P—E公司生产的TGS-2为例加以说明,下图5—2所示。

图中左边部分的试样在程序控温下工作。它是把程序发生器发生的控温信号与加热炉中控温热电偶产生的信号相比较,所得偏差信号经放大器放大,再经过PID(比例、积分、微分)调节后,作用于可控硅触发线路以变更可控硅的导通角,从而改变加热电流,使偏差信号趋于零,以达到闭环自动控制的目的,使试验的温度严格地按给定速率线性升温或降温。图中右边为天平检测部分,试样质量变化,通过零位平衡原理的称重变换器,把与质量变化成正比的输出电流信号,经称重放大器放大,再由记录仪或微处理机加以记录。图中其他为热重天平辅助调节不可缺少的部分,温度补偿器是校温时用的;称量校正器是校正天平称量准确度用的;电调零为自动清零装置;电减码为如需要可人为扣除试样重量时用;微分器可对试样质量变化

作微分处理,得到质量变化速率曲线。

17.5实验技术

17.5.1试样量和试样皿

热重法测定,试样量要少,一般2~5mg。一方面是因为仪器天平灵敏度很高(可达0.1μg),另一方面如果试样量多,传质阻力越大,试样内部温度梯度大,甚至试样产生热效应会使试样温度偏离线性程序升温,使TG曲线发生变化,粒度也是越细越好,尽可能将试样铺平,如粒度大,会使分解反应移向高温。 试样皿的材质,要求耐高温,对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性和催化活性。通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。特别要注意,不同的样品要采用不同材质的试样皿,否则会损坏试样皿,如:碳酸钠会在高温时与石英、陶瓷中的SiO2反应生成硅酸钠,所以象碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。铂金试样皿,对有加氢或脱氢的有机物

有活性,也不适合作含磷、硫和卤素的聚合物样品,因此要加以选择。

17.5.2升温速率

升温速度越快,温度滞后越严重,如聚苯乙烯在N2中分解,当分解程度都取失重10%时,用1℃/rnin测定为357℃,用5℃/min测定为394℃相差37℃。升温速度快,使曲线的分辨力下降,会丢失某些中

间产物的信息,如对含水化合物慢升温可以检出分步失水的一些中间物。

17.5.3气氛的影响

热天平周围气氛的改变对TG曲线影响显著,图5—3所示是CaCO3在真空、空气和CO2三种气氛中的TG曲线,其分解温度相差近600℃,原因在于CO2是CaCO3分解产物,气氛中存在CO2会抑制CaCO3

的分解,使分解温度提高。

聚丙烯在空气中,150~180℃下会有明显增重,这是聚丙烯氧化的结果,在N2中就没有增重。气流速度

一般为40ml/min,流速大对传热和溢出气体扩散有利。

17.5.4挥发物的冷凝

分解产物从样品中挥发出来,往往会在低温处再冷凝,如果冷凝在吊丝式试样皿上会造成测得失重结果偏低,而当温度进一步升高,冷凝物再次挥发会产生假失重,使TG曲线变形。解决的办法,一般采用加大

气体的流速,使挥发物立即离开试样皿。

17.5.5浮 力

浮力变化是由于升温使样品周围的气体热膨胀从而相对密度下降,浮力减小,使样品表观增重。如:300℃时的浮力可降低到常温时浮力的一半,900℃时可降低到约1/4。实用校正方法是做空白试验,(空载热重

实验),消除表观增重。

17.5.6? TG失重曲线的处理和计算

17.5.6.1 TG曲线关键温度表示法

失重曲线上的温度值常用来比较材料的热稳定性,所以如何确定和选择十分重要,至今还没有统一的规定。但人们为了分析和比较的需要,也有了一些大家认可的确定方法。如图5—4所示,A点叫起始分解温度,是TG曲线开始偏离基线点的温度;B点叫外延起始温度,是曲线下降段切线与基线延长线的交点。C点叫外延终止温度,是这条切线与最大失重线的交点。D点是TG曲线到达最大失重时的温度,叫终止温度。E、F、G分别为失重率为5%、10%、50%时的温度,失重率为50%的温度又称半寿温度。其中B点温度重复性最好,所以多采用此点温度表示材料的稳定性。当然也有采用A点的,但此点由于诸多因素一般很难确定。如果了TG曲线下降段切线有时不好划时,美国ASTM规定把过5%与50%两点的直线与基线的延长线的交点定义为分解温度;国际标准局(ISO)规定,把失重20%和50%两点的直线与基线的延长线

的交点定义为分解温度。

17.5.6.2? TG曲线失重量表示方法

如图13—5所示

A点至B点温度失重率为:

(99.5-50)/100=49.5%

C点至D点温度失重率为:

(50-24.5)/100=25.5%

17.5.6.3微商曲线(DTG)表示和意义

在普通记录TG曲线对温度或时间的一阶导数,也就是重量的变化率与温度成时间的函数关系被连续记录下来,DTG曲线是一个峰形曲线。图5—6是一般TG和DTG模式曲线的比较微商热重曲线的获得,在分析时有重要作用,它不仅能精确反映出样品的起始反应温度,达到最大反应速率的温度(峰值)以及反应终止的温度,而TG曲线很难做到;而且DTG曲线峰面积与样品对应的质(重)量变化成正比,可精确的进行定量分析;又能够消除丁G曲线存在整个变化过程各阶段变化互相衔接而不易分开的毛病,以DTG峰的最大值为界把热失重阶段分成两部分,区分各个反应阶段,这是DTG的最大可取之处;另外,如果把DTG和DTA的同一样品谱图进行比较,能判断出是重量变化引起的峰还是热量变化引起的峰,TG就办不到这

一点。

17.6应 用

17.6.1聚合物热稳定性的评价

评价聚合物热稳定性最简单、方便的方法,是做不同材料的TG曲线并画在一张图上比较。如图5—7测定了五种聚合物的热重曲线,由图可知,PMMA、PE、PTFE都可以完全分解,但热稳定性依次增加。PVC稳定性较差,第一步失重阶段是脱HCl,发生在200~300℃,脱HCl后分子内形成共轭双键,热稳定性提高(TG曲线下降缓慢),直至较高温度约4200℃时大分子链断裂,形成第二次失重。PMMA分解温度低是分子链中叔碳和季碳原子的键易断裂所致,PTFE是由于链中C-F键键能大,故热稳定性大大提高。聚

酰亚胺PI由于含有大量的芳杂环结构,需850℃才分解40%左右,热稳定性较强。


© 2024 实用范文网 | 联系我们: webmaster# 6400.net.cn