高数a第一章习题答案

习题答案 习题1-1 (A)

1.(1)(-∞, 1) ⋃(1, 2) ⋃(2, +∞) (2)[-1, 0) ⋃(0, 1]

(3)(-∞, -1) ⋃(-1, 1) ⋃(1, +∞) (4)x ≠

k π+

且x ≠

π

3

k π+5π3

π

2)

(k =0, ±1, ±2, )

(5)(2k π

, 2k π+

(k =0, ±1, ±2, )

(6)[-1, 3] 2. 3.

12

6, 6+

19

22

2

, 6+(x 0+h )

2

,

22

,

, 0

5.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数

(6)当f (x ) 为奇函数或偶函数时,该函数为偶函数;

当f (x ) 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数 6.(1)是周期函数,T (3)是周期函数,T 7.(1)y

=

-dx +b cx -a

=2π=4

(2)是周期函数,T

=4

(4)不是周期函数

=13arcsin

x

2

(2)y

x 2

(3)y =e x -1-2 (4)y (5)y =

e -e

2

x

-x

=log

1-x

8.(1)y

=u , u =a -x

2

(2)y =e u , u

=x

2

(3)y =lg u , u =cos (4)y =u 2, u (5)y

=arctgu , u =cos v , v =e , w =-

w

=tgv , v =6x

1x

2

(6)y =u 2, u

=ln v , v =ln w , w =x

2

9.(1)[-1, 1] (2) [2k π, (2k +1) π] (3)[-a , 1-a ]

k ∈z

(4)若0

2

1

>

12

,则D =Ф.

2x

10. ϕ[ϕ(x )]=

x

4

,ψ[ψ(x )]=2,ϕ[ψ(x )]=2,ψ[ϕ(x )]=2.

2

x

x

2

11. a =4, b =-1

⎧1, x

f [g (x )]=⎨0, x =0

⎪-1, x >0⎩

=πh [r

2

12.

⎧e , x

,g [f (x )]=⎪⎨1, x =1

⎪-1⎪⎩e , x >1

13. V 14. V 15. V

h 2

-() ], 2

(0

=

r

32

24π

(2π-α)

2

4πα-α

2

, 0

=

πr h

2

23

2

3[(h -r ) -r ]

,

(2r , +∞)

16.(1)

⎧90, ⎪

p =⎨90-(x -100) ⋅0. 01,

⎪75, ⎩

0≤x ≤100100

0≤x ≤100100

(2)

⎧30x , ⎪2

p =(p -60) x =⎨31x -0. 01x ,

⎪15x , ⎩

(3)p =21000(元)

习题1-1 (B)

1. f (x ) 为偶函数.

2. f (x ) =

x -2, f (x -

2

1x

) =x +

2

1x

2

-4

3. f [g (x )]=⎨4. 8.

3+2x 1+x

22

⎧0, ⎩x ,

2

x

,g [f (x )]=⎨

⎧0, ⎩x ,

2

x

-1

⎧1-e -x ,

f (x ) =⎨

⎩-1,

9. g (x ) =

ln(1-x ) ,

(-∞, 0]

10. 奇函数,偶函数,偶函数,偶函数. 12. f (2005) =1

习题1-2 (A)

1.(1) (3) (5)

12

n +1

, 0 (2)(-1)

n +1

1n +1

, 0

n n +2

, 1 (4)(n +1) ⋅(-1) n +1, 没有极限

2

1(n +1)

+

2(n +1)

2

+ +

n +1(n +1)

2

,

2

1

(n +1)(n +2)

(6)(-1)

2

, 没有极限.

3

2.(1)17; (2)24; (3)[3.0, [

1

ε

]

ε

]

习题1-3 (A)

3. δ4. Z

=0. 0002

≥397

x →0

6. lim

x →0

-

f (x ) =lim +f (x ) =1, lim f (x ) =1

x →0

lim

x →0

-

ϕ(x ) =-1, lim ϕ(x ) =1, lim ϕ(x ) 不存在.

x →0

+

x →0

习题1-4 (A)

3.(1)0; (2)0; (3)0 4. lim

x →-1

y =0; lim y =∞

x →1

习题1-4 (B)

3. y

=x cos x 在(-∞, +∞) 上无界,但当x →+∞

时,此函数不是无穷大.

5. 当a =0, b =1时,f (x ) 是无穷小量; 当a ≠0, b 为任意实数时,f (x ) 是无穷大量.

习题1-5 (A)

1.(1)0; (2)1; (3)1; (4) (5)

a -13a

2

310

;

; (6)3x 2; (7); (8)-1.

3

4

2.(1)-; (2)0; (3)∞; (4)-;

4

4

31

(5)

2

20

⋅3

50

30

5

; (6) -.

4

1

⎧1, ⎪

3.(1)⎨0,

⎪-1, ⎩

01

mn (n -m )

212

; (2)3; (3); (4)-

3

41

2

4.(1)10; (2); (3)

m n 34

; (4)0;

12

(5)0; (6); (7); (8).

习题1-5 (B)

1.(1)2; (2)-; (3)-

21

156

; (4)

2a (3-1)

2

⎧0, k >2

3⎪

(5); (6)⎨1, k =2

2⎪∞, k

; (7)2; (8)0 .

2. α=1, β=-1

3. a =9 4. a =1, b =-1 5. 不一定.

习题1-6 (A)

1.(1)2; (2)3; (3); (4)-1; (5)cos a ;

1

2 (6)π

2

; (7)1; (8)

2

; (9)1; 2.(1)e -1; (2)e 2; (3)e -2; (4)e -2; (5)e -1; (6)e 2.

习题1-6 (B)

1.(1)1

; (2)2

; (3)1; (4)0;

(5)0; (6)1; (7)0; (8)e -1. 2.(4)3; (5)

1+5

2.

习题1-7 (A)

1. 当x →0时,x 4

-x

3

比x 2

+x

3

为高阶无穷小.

2. (1)同阶,但不是等价; (2)同阶,且为等价. 3. α=12

4. α

=m

⎧0, m

(2)⎪

⎨1, m =n ; 1

2;

(3)⎪2;

∞, m >n (4)1

a 1

2

; (5)b

; (6)4

.

(10)x .

习题1-7 (B)

1.(1); (2); (3); (4)0;

3

2

2

2

e

1

(5)1; (6)-; (7)∞; (8)1.

4

1

5. p (x ) =2x 36. A ln a .

+x +3x

2

.

习题1-8 (A)

1. a 2.

=1

f (x ) 在x =0处连续

=1为可去间断点,补充f (1) =-2

3.(1)x

x =2

为第二类间断点

+

(2)x =0和x =k π

π

2

为可去间断点,补充f (0) =1, f (k π

+

π

2

) =0;

x =k π(k ≠0) 为第二类间断点.

(3)x =1为第一类间断点

(4)x =0为第二类间断点. 4.(1)x

=1为可去间断点,补充f (1) =

2312

; ;

;x =0为第二类间断点;

(2)x =0为可去间断点,补充f (0) = (3)x (4)x

=1为可去间断点,补充f (1) =-=2

π

214

为可去间断点,补充f (2) =;x =0为第一类间断点;

x =-2为第二类间断点.

(5)x =0为第一类间断点; (6)x =a 为第一类间断点; (7)x

=1为第一类间断点;

(8)x =-1为第二类间断点.

习题1-8 (B)

1. 2. 3. 4. 5.

x =±1为第一类间断点.

a =0, b =1 a =

52

π

2

(n =0, ±1, ±2, )

a =2n π-

a =-π, b =0

6. (1)当a =0, b ≠1时,有无穷间断点x =0; (2)当a ≠1, b =e 时,有无穷间断点x

=1.

习题1-9 (A)

1. 连续区间为:(-∞, -3), (-3, 2), (2, +∞)

lim f (x ) =

x →0

12

,lim

x →-3

f (x ) =-

85

,lim

x →2

f (x ) =∞

.

2. 连续区间为:(-∞, 0), (0, +∞) .

3. (1) -1; (2) 1; (3) h ; (4) -1; (5) (9) 4. 5.

-

22

; (6) -2; (7) 1; (8) 1;

e

5

ab

; (10) ; (11) -1; (12) 2.

a =1 a =1

习题1-9 (B)

1. (1)x =0为第一类间断点; (2)x = (3)x =0为第一类间断点; (4)x = (5)无间断点.

-1为第一类间断点; ±1为第一类间断点;

2. a =0, b =1

-1

-1

3. (1)e ; (2)e 2; (3)e cot a ; (4)0; (5)0; (6)-2; (7); (8)

1

π

2

.

24.

12

总复习题一

一. 1. D 2. D 3. D 4. B 6. D 7. D 8. C 9. D f (-x ) =⎧⎪x 2二.1. -x , x

⎪0

⎩x 2, x ≥ 2.

arcsin(1-x 2

) , [-2,

2]

3. -1 4. 充分,必要 5. 充分,必要 6. 充分必要 7. 12

8. a =b

9.

65

10. 第二类,第一类 三. 1. ϕ(x ) =

x +1x -1

2. α

=-

200412005

, β=

2005

4. 4 5. e

4

7.

12ln a

8. 当α≤0时,f (x ) 在x =0处不连续;

8

5. C 10. D 3. lim n →∞

x n =1 6. -50

当α当α9.

-2

8

>0, β=-1时,f (x ) 在x =0处不连续; >0, β≠-1时,f (x ) 在x =0处不连续.

习题选解 习题1-2 (B)

1. 根据数列极限的定义证明:

(1)lim

n →∞

a =1

(a >0时) >0

>1时,令a =1+h n (h n >0) =(1+h n )

n

证明:(ⅰ) ∀ε 当a ∴a

=1+nh n +

n >

a

n (n -1)

2

h n + +h n >nh n

2n

∴0

n

n

ε

时,

a =1

a

=[]+1,当n >N

ε

a -1=h n

a n

,即lim

n →∞

=1时,显然成立.

1a >1

(ⅲ) 当0

n →∞

b =lim

1a

n →∞=1

n

∴lim

n →∞

a =1

>0

n

时,有lim

n →∞

综合(ⅰ) ,(ⅱ) ,(ⅲ) ,∴当a

a =1.

习题1-6 (B)

2. 利用极限存在准则证明: (2)lim

n →∞

(

1n +n +1

2

+

2n +n +2

2

+ +

n n +n +n

2

) =

12

证明:设x

1

n

=

1n +n +1

2

+

2n +n +2

2

+ +

n n +n +n

2

n (n +1)

22 2≤x n ≤2n +n +n n +n +1

1

n (n +1)

1

n (n +1)

1 =n →∞n →∞n 2+n +12

1

∴由夹逼性定理知,lim x n = n →∞2

12n 1

即lim (2+2+ +2) =

n →∞n 2+n +1n +n +2n +n +n

x +y

3. 设x 0, y 0>0,x n +1=x n y n ,y n +1=n n .

2

lim

=2

2n +n +n

n (n +1)

1

1

,lim

.

证明:lim x n

n →∞ 证明:

=lim y n

n →∞

x n y n ≤

x n +y n

2

(n =0, 1, 2, )

∴0≤

x n +1≤y n +1

∴x n +1=

y n +1=

x n y n ≥x n +y n

2

x n x n =x n y n +y n

2

(n =0, 1, 2, )

=y n

由此可知数列{x n }单调增加,数列{y n }单调减少, 又x 0

≤x 1≤ ≤x n ≤x n +1≤y n +1≤y n ≤ ≤y 1≤y 0

∴{x n }与{y n }都是有界的.

由“单调有界数列必有极限”准则, ∴{x n },{y n }都收敛.

x n 设lim n →∞

=a , lim y n =b

n →∞

y n +1=

a +b 2

x n +y n

2

⇒a =b

y n ,∴lim n →∞

=lim

x n +y n

2

n →∞

∴b =

x n 即lim n →∞

=lim y n .

n →∞

习题1-10 (B)

3. 设函数f (x ) 在[0, 1]上非负连续,且f (0) =

f (1) =0,

f (x 0+l ) .

试证:对∀l ∈(0, 1) ,必存在一点x 0∈[0, 1-l ],使f (x 0) =证明:令F (x ) =

f (x ) -f (x +l ) ,

∀l ∈(0, 1)

f (x ) 在[0, 1]上连续,f (x +l ) 在[-l , 1-l ]上连续,

∴F (x ) 在[0, 1-l ]上连续. 又

F (0) =f (0) -f (l ) =-f (l ) ≤0F (1-l ) =f (1-l ) -f (1) =f (1-l ) ≥0

(

f (x ) ≥0)

∴F (0) ⋅F (1-l ) ≤0 (ⅰ) 若F (0) =0,取x 0

=0

,即f (0) =f (l )

f (1)

(ⅱ) 若F (1-l ) =0,取x 0

=1-l

,即f (1-l ) =

(ⅲ) F (0) ≠0, F (1-l ≠0) ∴F (0) ⋅F (1-l )

使F (x 0) =0, 即f (x 0) =

f (x 0+l ) .

综合(ⅰ) ,(ⅱ) ,(ⅲ) ,对∀l ∈(0, 1) ,必存在一点

x 0∈[0, 1-l ],使f (x 0) =f (x 0+l ) .

总复习题一

三.11. 设f (x ) 在[a , b ]上连续,且f (x ) 在[a , b ]上无零点. 证明f (x ) 在[a , b ]上不变号. 证明:(反证法)

假设f (x ) 在[a , b ]变号,

即∃x 1, x 2∈[a , b ],使f (x 1) >0, f (x 2)

f (x 2)

f (x ) 在[a , b ]上连续,∴f (x ) 在[x 1, x 2]上连续.

由零点存在定理知,∃ξ∈(x 1, x 2) ⊂(a , b ) ,使f (ξ) =0 即ξ是f (x ) 在[a , b ]上的一个零点. 这与f (x ) 在[a , b ]上无零点矛盾, ∴

f (x ) 在[a , b ]上不变号.


© 2024 实用范文网 | 联系我们: webmaster# 6400.net.cn